Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
One-Step Solvothermal Synthesis Flower-like CuInS2 and Application in Dye-Sensitized Solar Cells as Counter Electrode
Corresponding Author(s) : G. Li
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
Chalcopyrite flower-like CuInS2 were successfully synthesized by a one-step solvothermal method and has been applied as a counter electrode for efficient dye-sensitized solar cells. The as-synthesized flower-like CuInS2 were composed of nanoplates. The prepared CuInS2 powders occupy energy band gaps of 1.38 eV, which is considerably approaching to ideal band gap for optimum solar energy conversion via the photovoltaic effect. The dye-sensitized solar cells with flower-like CuInS2 as a counter electrode can yield 4.5 % photoelectric conversion efficiency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.U. Huynh, J.J. Dittmer and A.P. Alivisatos, Science, 295, 2425 (2002); doi:10.1126/science.1069156.
- M. Grätzel, U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck and H. Spreitzer, Nature, 395, 583 (1998); doi:10.1038/26936.
- M. Gratzel, Nature, 414, 338 (2001); doi:10.1038/35104607.
- R. Fan, D.C. Kim, S.H. Jung, J.H. Um, W. In Lee and C.W. Chung, Thin Solid Films, 521, 123 (2012); doi:10.1016/j.tsf.2012.02.038.
- J.L. Shay and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications, Pergamon, New York, edn 1 (1975).
- K. Ernst, A. Belaidi and R. K nenkamp, Semicond. Sci. Technol., 18, 475 (2003); doi:10.1088/0268-1242/18/6/314.
- J. Yang, C.X. Bao, J.Y. Zhang, T. Yu, H. Huang, Y.L. Wei, H. Gao, G. Fu, J.G. Liu and Z.G. Zou, Chem. Commun., 49, 2028 (2013); doi:10.1039/c3cc00188a.
- D.P. Dutta and G. Sharma, Mater. Lett., 6, 2395 (2006); doi:10.1016/j.matlet.2006.01.025.
- S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger and A.F. Hepp, Chem. Mater., 15, 3142 (2003); doi:10.1021/cm034161o.
- Q.Y. Lu, J.Q. Hu, K.B. Tang, Y.T. Qian, G.E. Zhou and X.M. Liu, Inorg. Chem., 39, 1606 (2000); doi:10.1021/ic9911365.
- G.Z. Shen, D. Chen, K.B. Tang, Z. Fang, J. Sheng and Y.T. Qian, J. Cryst. Growth, 254, 75 (2003); doi:10.1016/S0022-0248(03)01142-4.
- K. Wakita, M. Iwai, Y. Miyoshi, H. Fujibuchi and A. Ashida, Compos. Sci. Technol., 65, 765 (2005); doi:10.1016/j.compscitech.2004.10.009.
- K.B. Tang, Y.T. Qian, J.H. Zeng and X.G. Yang, Adv. Mater., 15, 448 (2003); doi:10.1002/adma.200390104.
- J.C. Zhou, S.W. Li, X.L. Gong, Y.L. Yang and Y. Guo, Mater. Lett., 65, 2001 (2011); doi:10.1016/j.matlet.2011.03.089.
- H.M. Hu, B.J. Yang, X.Y. Liu, R. Zhang and Y.T. Qian, Inorg. Chem. Commun., 7, 563 (2004); doi:10.1016/j.inoche.2004.02.019.
- X.L. Gou, S.J. Peng, L. Zhang, Y.H. Shi, J. Chen and P.W. Shen, Chem. Lett., 35, 1050 (2006); doi:10.1246/cl.2006.1050.
- J. Guo, W.H. Zhou, M. Li, Z. Hou, J. Jiao, Z.J. Zhou and S.X. Wu, J. Cryst. Growth, 359, 72 (2012); doi:10.1016/j.jcrysgro.2012.08.029.
- L. Zheng, Y. Xu, Y. Song, C.Z. Wu, M. Zhang and Y. Xie, Inorg. Chem., 48, 4003 (2009); doi:10.1021/ic802399f.
- F. Aslan, M.Z. Zarbali, B. Yesilata and I.H. Mutlu, Mater. Sci. Semicond. Process., 16, 138 (2013); doi:10.1016/j.mssp.2012.05.015.
- Y.X. Qi, K.B. Tang, S.Y. Zeng and W.W. Zhou, Microporous Mesoporous Mater., 114, 395 (2008); doi:10.1016/j.micromeso.2008.01.027.
- Y.X. Qi, Q.C. Liu, K.B. Tang, Z.H. Liang, Z.B. Ren and X.M. Liu, J. Phys. Chem. C, 113, 3939 (2009); doi:10.1021/jp807987t.
- A. Zunger, Appl. Phys. Lett., 50, 164 (1987); doi:10.1063/1.97649.
- C. Rinc'n, Phys. Rev. B, 45, 12716 (1992); doi:10.1103/PhysRevB.45.12716.
- S.H. Wei, L.G. Ferreira and A. Zunger, Phys. Rev. B, 45, 2533 (1992); doi:10.1103/PhysRevB.45.2533.
- J.D. Roy-Mayhew, D.J. Bozym, C. Punckt and I.A. Aksay, ACS Nano, 4, 6203 (2010); doi:10.1021/nn1016428.
- L.X. Yi, Y.Y. Liu, N.L. Yang, Z.Y. Tang, H.J. Zhao, G.H. Ma, Z.G. Su and D. Wang, Energy Environ. Sci., 6, 835 (2013); doi:10.1039/c3ee24176a.
- M.X. Wu, X. Lin, A. Hagfeldt and T.L. Ma, Angew. Chem. Int. Ed., 50, 3520 (2011); doi:10.1002/anie.201006635.
- Z.Y. Zhang, X.Y. Zhang, H.X. Xu, Z.H. Liu, S.P. Pang, X.H. Zhou, S.M. Dong, X. Chen and G.L. Cui, ACS Appl. Mater. Interfaces, 4, 6242 (2012); doi:10.1021/am3018338.
References
W.U. Huynh, J.J. Dittmer and A.P. Alivisatos, Science, 295, 2425 (2002); doi:10.1126/science.1069156.
M. Grätzel, U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck and H. Spreitzer, Nature, 395, 583 (1998); doi:10.1038/26936.
M. Gratzel, Nature, 414, 338 (2001); doi:10.1038/35104607.
R. Fan, D.C. Kim, S.H. Jung, J.H. Um, W. In Lee and C.W. Chung, Thin Solid Films, 521, 123 (2012); doi:10.1016/j.tsf.2012.02.038.
J.L. Shay and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications, Pergamon, New York, edn 1 (1975).
K. Ernst, A. Belaidi and R. K nenkamp, Semicond. Sci. Technol., 18, 475 (2003); doi:10.1088/0268-1242/18/6/314.
J. Yang, C.X. Bao, J.Y. Zhang, T. Yu, H. Huang, Y.L. Wei, H. Gao, G. Fu, J.G. Liu and Z.G. Zou, Chem. Commun., 49, 2028 (2013); doi:10.1039/c3cc00188a.
D.P. Dutta and G. Sharma, Mater. Lett., 6, 2395 (2006); doi:10.1016/j.matlet.2006.01.025.
S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger and A.F. Hepp, Chem. Mater., 15, 3142 (2003); doi:10.1021/cm034161o.
Q.Y. Lu, J.Q. Hu, K.B. Tang, Y.T. Qian, G.E. Zhou and X.M. Liu, Inorg. Chem., 39, 1606 (2000); doi:10.1021/ic9911365.
G.Z. Shen, D. Chen, K.B. Tang, Z. Fang, J. Sheng and Y.T. Qian, J. Cryst. Growth, 254, 75 (2003); doi:10.1016/S0022-0248(03)01142-4.
K. Wakita, M. Iwai, Y. Miyoshi, H. Fujibuchi and A. Ashida, Compos. Sci. Technol., 65, 765 (2005); doi:10.1016/j.compscitech.2004.10.009.
K.B. Tang, Y.T. Qian, J.H. Zeng and X.G. Yang, Adv. Mater., 15, 448 (2003); doi:10.1002/adma.200390104.
J.C. Zhou, S.W. Li, X.L. Gong, Y.L. Yang and Y. Guo, Mater. Lett., 65, 2001 (2011); doi:10.1016/j.matlet.2011.03.089.
H.M. Hu, B.J. Yang, X.Y. Liu, R. Zhang and Y.T. Qian, Inorg. Chem. Commun., 7, 563 (2004); doi:10.1016/j.inoche.2004.02.019.
X.L. Gou, S.J. Peng, L. Zhang, Y.H. Shi, J. Chen and P.W. Shen, Chem. Lett., 35, 1050 (2006); doi:10.1246/cl.2006.1050.
J. Guo, W.H. Zhou, M. Li, Z. Hou, J. Jiao, Z.J. Zhou and S.X. Wu, J. Cryst. Growth, 359, 72 (2012); doi:10.1016/j.jcrysgro.2012.08.029.
L. Zheng, Y. Xu, Y. Song, C.Z. Wu, M. Zhang and Y. Xie, Inorg. Chem., 48, 4003 (2009); doi:10.1021/ic802399f.
F. Aslan, M.Z. Zarbali, B. Yesilata and I.H. Mutlu, Mater. Sci. Semicond. Process., 16, 138 (2013); doi:10.1016/j.mssp.2012.05.015.
Y.X. Qi, K.B. Tang, S.Y. Zeng and W.W. Zhou, Microporous Mesoporous Mater., 114, 395 (2008); doi:10.1016/j.micromeso.2008.01.027.
Y.X. Qi, Q.C. Liu, K.B. Tang, Z.H. Liang, Z.B. Ren and X.M. Liu, J. Phys. Chem. C, 113, 3939 (2009); doi:10.1021/jp807987t.
A. Zunger, Appl. Phys. Lett., 50, 164 (1987); doi:10.1063/1.97649.
C. Rinc'n, Phys. Rev. B, 45, 12716 (1992); doi:10.1103/PhysRevB.45.12716.
S.H. Wei, L.G. Ferreira and A. Zunger, Phys. Rev. B, 45, 2533 (1992); doi:10.1103/PhysRevB.45.2533.
J.D. Roy-Mayhew, D.J. Bozym, C. Punckt and I.A. Aksay, ACS Nano, 4, 6203 (2010); doi:10.1021/nn1016428.
L.X. Yi, Y.Y. Liu, N.L. Yang, Z.Y. Tang, H.J. Zhao, G.H. Ma, Z.G. Su and D. Wang, Energy Environ. Sci., 6, 835 (2013); doi:10.1039/c3ee24176a.
M.X. Wu, X. Lin, A. Hagfeldt and T.L. Ma, Angew. Chem. Int. Ed., 50, 3520 (2011); doi:10.1002/anie.201006635.
Z.Y. Zhang, X.Y. Zhang, H.X. Xu, Z.H. Liu, S.P. Pang, X.H. Zhou, S.M. Dong, X. Chen and G.L. Cui, ACS Appl. Mater. Interfaces, 4, 6242 (2012); doi:10.1021/am3018338.