Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Optical Property of ZnO/SiO2 Nanocomposite Cryogels
Corresponding Author(s) : Lei Miao
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
In this paper, ZnO cryogels with a dopant of SiO2 with molar ratio of 9:1 to 1:1 were prepared by sol-gel technology and dried by a novel vacuum freeze drying using a co-precursor method. The as-prepared ZnO/SiO2 nanocomposites were annealed in air at 250, 500 and 800 ºC for 45 min, respectively. The structure and morphology of the nanocomposites were determined by X-ray diffraction (XRD) and field emission scanning electron microscopy. The optical properties were estimated not only by UV-visible spectrometer but also theoretical calculation. The annealed nanocomposites exhibited hexagonal Wurtzite structure ZnO and whose crystallinity became better as an increase of annealing temperature. The amounts of doping SiO2 affect the optical band gaps and morphology of ZnO/SiO2 nanocomposites significantly. After annealing, the obtained ZnO nanorods grow up in size from the SEM images with annealing temperature ranging from 250 to 500 ºC and flowerlike ZnO was formed with tetragonal pillars at 800 ºC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhang, L.D. Sun, J.L. Yin, H.L. Su, C.S. Liao and C.H. Yan, Chem. Mater., 14, 4172 (2002); doi:10.1021/cm020077h.
- J.M. Wang and L. Gao, J. Mater. Chem., 13, 2551 (2003); doi:10.1039/b307565f.
- Z. Gui, J. Liu, Z.Z. Wang, L. Song, Y. Hu, W.C. Fan and D.Y. Chen, J. Phys. Chem. B, 109, 1113 (2005); doi:10.1021/jp047088d.
- L. Guo, Y.L. Ji, H. Xu, P. Simon and Z. Wu, J. Am. Chem. Soc., 124, 14864 (2002); doi:10.1021/ja027947g.
- D. Ledwith, S.C. Pillai, G.W. Watson and J.M. Kelly, Chem. Commun., 20, 2294 (2004); doi:10.1039/b407768g.
- J.H. Park, H.J. Choi, Y.J. Choi, S.H. Sohn and J.G. Park, J. Mater. Chem., 14, 35 (2004); doi:10.1039/b312821k.
- S. Lu, H. Liu, L. Zhang and X. Yao, Chin. Sci. Bull., 41, 230 (1996).
- E.A. Abel-Aal, A.A. Ismail, M.M. Rashad and H. El-Shall, J. Non-Cryst. Solids, 352, 399 (2006); doi:10.1016/j.jnoncrysol.2006.01.040.
- R. Moleski, E. Leontidis and F. Krumeich, J. Colloid Interf. Sci., 302, 246 (2006); doi:10.1016/j.jcis.2006.07.030.
- K. Kanamori, J. Ceram. Soc. Jpn., 119, 16 (2011); doi:10.2109/jcersj2.119.16.
- S. Chakrabarti, D. Ganguli and S. Chaudhuri, Phys. Status Solidi A, 201, 2134 (2004); doi:10.1002/pssa.200306824.
- W.C. Chen, Mater. Lett., 59, 1239 (2005); doi:10.1016/j.matlet.2004.12.033.
- V. Musat, E. Fortunato, S. Petrescu and A.M. Botelho do Rego, Phys. Status Solidi A, 205, 2075 (2008); doi:10.1002/pssa.200778939.
- F. Li, X. Huang, Y. Jiang, L. Liu and Z. Li, Mater. Res. Bull., 44, 437 (2009); doi:10.1016/j.materresbull.2008.04.024.
- J. Hwang, B. Min, J.S. Lee, K. Keem, K. Cho, M.Y. Sung, M.S. Lee and S. Kim, Adv. Mater., 16, 422 (2004); doi:10.1002/adma.200305209.
- R. Anedda, C. Cannas, A. Musinu, G. Pinna, G. Piccaluga and M. Casu, J. Nanopart. Res., 10, 107 (2008); doi:10.1007/s11051-007-9235-5.
- H. Cui, M. Zayat and D. Levy, J. Alloys Comp., 474, 292 (2009); doi:10.1016/j.jallcom.2008.06.065.
- L.F. Su, L. Miao, G. Xu and S. Tanemura, Adv. Mater. Res., 105, 852 (2010).
- L.F. Su, L. Miao and S. Tanemura, Mater. Sci. Forum, 663-665, 1242 (2010); doi:10.4028/www.scientific.net/MSF.663-665.1242.
- M.C. Payne, T.A. Arias and J.D. Joannopoulos, Rev. Mod. Phys., 64, 1045 (1992); doi:10.1103/RevModPhys.64.1045.
- W. Kohn and L.J. Sham, Phys. Rev., 140(4A), A1133 (1965); doi:10.1103/PhysRev.140.A1133.
- D. Vanderbilt, Phys. Rev. B, 41, 7892 (1990); doi:10.1103/PhysRevB.41.7892.
- R. Elilarassi and G. Chandrasekaran, J. Mater. Sci. Mater. Electron., 22, 751 (2011); doi:10.1007/s10854-010-0206-8.
- K. Han, Z. Zhao, Z. Xiang, C. Wang, J. Zhang and B. Yang, Mater. Lett., 61, 363 (2007); doi:10.1016/j.matlet.2006.04.064.
- S. Chakraborty, A.K. Kole and P. Kumbhakar, Mater. Lett., 67, 362 (2012); doi:10.1016/j.matlet.2011.10.018.
References
J. Zhang, L.D. Sun, J.L. Yin, H.L. Su, C.S. Liao and C.H. Yan, Chem. Mater., 14, 4172 (2002); doi:10.1021/cm020077h.
J.M. Wang and L. Gao, J. Mater. Chem., 13, 2551 (2003); doi:10.1039/b307565f.
Z. Gui, J. Liu, Z.Z. Wang, L. Song, Y. Hu, W.C. Fan and D.Y. Chen, J. Phys. Chem. B, 109, 1113 (2005); doi:10.1021/jp047088d.
L. Guo, Y.L. Ji, H. Xu, P. Simon and Z. Wu, J. Am. Chem. Soc., 124, 14864 (2002); doi:10.1021/ja027947g.
D. Ledwith, S.C. Pillai, G.W. Watson and J.M. Kelly, Chem. Commun., 20, 2294 (2004); doi:10.1039/b407768g.
J.H. Park, H.J. Choi, Y.J. Choi, S.H. Sohn and J.G. Park, J. Mater. Chem., 14, 35 (2004); doi:10.1039/b312821k.
S. Lu, H. Liu, L. Zhang and X. Yao, Chin. Sci. Bull., 41, 230 (1996).
E.A. Abel-Aal, A.A. Ismail, M.M. Rashad and H. El-Shall, J. Non-Cryst. Solids, 352, 399 (2006); doi:10.1016/j.jnoncrysol.2006.01.040.
R. Moleski, E. Leontidis and F. Krumeich, J. Colloid Interf. Sci., 302, 246 (2006); doi:10.1016/j.jcis.2006.07.030.
K. Kanamori, J. Ceram. Soc. Jpn., 119, 16 (2011); doi:10.2109/jcersj2.119.16.
S. Chakrabarti, D. Ganguli and S. Chaudhuri, Phys. Status Solidi A, 201, 2134 (2004); doi:10.1002/pssa.200306824.
W.C. Chen, Mater. Lett., 59, 1239 (2005); doi:10.1016/j.matlet.2004.12.033.
V. Musat, E. Fortunato, S. Petrescu and A.M. Botelho do Rego, Phys. Status Solidi A, 205, 2075 (2008); doi:10.1002/pssa.200778939.
F. Li, X. Huang, Y. Jiang, L. Liu and Z. Li, Mater. Res. Bull., 44, 437 (2009); doi:10.1016/j.materresbull.2008.04.024.
J. Hwang, B. Min, J.S. Lee, K. Keem, K. Cho, M.Y. Sung, M.S. Lee and S. Kim, Adv. Mater., 16, 422 (2004); doi:10.1002/adma.200305209.
R. Anedda, C. Cannas, A. Musinu, G. Pinna, G. Piccaluga and M. Casu, J. Nanopart. Res., 10, 107 (2008); doi:10.1007/s11051-007-9235-5.
H. Cui, M. Zayat and D. Levy, J. Alloys Comp., 474, 292 (2009); doi:10.1016/j.jallcom.2008.06.065.
L.F. Su, L. Miao, G. Xu and S. Tanemura, Adv. Mater. Res., 105, 852 (2010).
L.F. Su, L. Miao and S. Tanemura, Mater. Sci. Forum, 663-665, 1242 (2010); doi:10.4028/www.scientific.net/MSF.663-665.1242.
M.C. Payne, T.A. Arias and J.D. Joannopoulos, Rev. Mod. Phys., 64, 1045 (1992); doi:10.1103/RevModPhys.64.1045.
W. Kohn and L.J. Sham, Phys. Rev., 140(4A), A1133 (1965); doi:10.1103/PhysRev.140.A1133.
D. Vanderbilt, Phys. Rev. B, 41, 7892 (1990); doi:10.1103/PhysRevB.41.7892.
R. Elilarassi and G. Chandrasekaran, J. Mater. Sci. Mater. Electron., 22, 751 (2011); doi:10.1007/s10854-010-0206-8.
K. Han, Z. Zhao, Z. Xiang, C. Wang, J. Zhang and B. Yang, Mater. Lett., 61, 363 (2007); doi:10.1016/j.matlet.2006.04.064.
S. Chakraborty, A.K. Kole and P. Kumbhakar, Mater. Lett., 67, 362 (2012); doi:10.1016/j.matlet.2011.10.018.