Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorbate-Induced Surface Stress of Methanol Monolayer on Au(III) Surface
Corresponding Author(s) : Rong Xie
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
By using established statistical thermodynamic theory of adsorbate-induced surface stress of adsorption monolayer on metal surface, the surface stress Dg of methanol on Au(III) surface has been calculated. The calculated results indicate that the adsorbed methanol caused compressive surface stress, which is approximately linearly correlated with coverage. Among various terms of intermolecular forces, both the substrate-medicated interaction energy and the induction energy are important to the surface stress.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Haiss, Rep. Progr. Phys., 64, 591 (2001); doi:10.1088/0034-4885/64/5/201.
- R. Berger, E. Delamarche, H.P. Lang, C. Gerber, J.K. Gimzewski, E. Meyer and H.-J. Güntherodt, Science, 276, 2021 (1997); doi:10.1126/science.276.5321.2021.
- W.-K. Chen, S.-H. Liu, M.-J. Cao, Q.-G. Yan and C.-H. Lu, J. Mol. Struct. (Theochem), 770, 87 (2006); doi:10.1016/j.theochem.2006.05.040.
- S.A.C. Carabineiro and B.E. Nieuwenhuys, Gold Bull., 42, 288 (2009); doi:10.1007/BF03214951.
- R. Xie, Chen, Wang, He and F.-C. Chen, J. Phys. Chem. B, 106, 12948 (2002); doi:10.1021/jp0210982.
- X. Wang, R. Chen, Y. Wang, T. He and F.-C. Liu, J. Phys. Chem. B, 102, 7568 (1998); doi:10.1021/jp980699j.
- R. Xie, Surf. Rev. Lett., 16, 807 (2009); doi:10.1142/S0218625X09013359.
- W. Haiss, R.J. Nichols, J.K. Sass and K.P. Charle, J. Electroanal. Chem., 452, 199 (1998); doi:10.1016/S0022-0728(98)00137-5.
- J.-P. Muscat, Progr. Surf. Sci., 25, 211 (1987); doi:10.1016/S0079-6816(87)80015-1.
- L.W. Bruch, Surf. Sci., 125, 194 (1983); doi:10.1016/0039-6028(83)90453-3.
- S.J. Lombardo and A.T. Bell, Surf. Sci. Rep., 13, 3 (1991); doi:10.1016/0167-5729(91)90004-H.
- T.J. Lawton, J. Carrasco, A.E. Baber, A. Michaelides and E.C.H. Sykes, Phys. Rev. Lett., 107, 256101 (2011); doi:10.1103/PhysRevLett.107.256101.
- R.C. Weast, CRC Handbook of Chemistry and Physics, CRC Press: Beca Raton (2000).
- R.A. Svehla, Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, NASA Technical Report R-132 (1962).
- G.L. Price and J.A. Venables, Surf. Sci., 59, 509 (1976); doi:10.1016/0039-6028(76)90031-5.
References
W. Haiss, Rep. Progr. Phys., 64, 591 (2001); doi:10.1088/0034-4885/64/5/201.
R. Berger, E. Delamarche, H.P. Lang, C. Gerber, J.K. Gimzewski, E. Meyer and H.-J. Güntherodt, Science, 276, 2021 (1997); doi:10.1126/science.276.5321.2021.
W.-K. Chen, S.-H. Liu, M.-J. Cao, Q.-G. Yan and C.-H. Lu, J. Mol. Struct. (Theochem), 770, 87 (2006); doi:10.1016/j.theochem.2006.05.040.
S.A.C. Carabineiro and B.E. Nieuwenhuys, Gold Bull., 42, 288 (2009); doi:10.1007/BF03214951.
R. Xie, Chen, Wang, He and F.-C. Chen, J. Phys. Chem. B, 106, 12948 (2002); doi:10.1021/jp0210982.
X. Wang, R. Chen, Y. Wang, T. He and F.-C. Liu, J. Phys. Chem. B, 102, 7568 (1998); doi:10.1021/jp980699j.
R. Xie, Surf. Rev. Lett., 16, 807 (2009); doi:10.1142/S0218625X09013359.
W. Haiss, R.J. Nichols, J.K. Sass and K.P. Charle, J. Electroanal. Chem., 452, 199 (1998); doi:10.1016/S0022-0728(98)00137-5.
J.-P. Muscat, Progr. Surf. Sci., 25, 211 (1987); doi:10.1016/S0079-6816(87)80015-1.
L.W. Bruch, Surf. Sci., 125, 194 (1983); doi:10.1016/0039-6028(83)90453-3.
S.J. Lombardo and A.T. Bell, Surf. Sci. Rep., 13, 3 (1991); doi:10.1016/0167-5729(91)90004-H.
T.J. Lawton, J. Carrasco, A.E. Baber, A. Michaelides and E.C.H. Sykes, Phys. Rev. Lett., 107, 256101 (2011); doi:10.1103/PhysRevLett.107.256101.
R.C. Weast, CRC Handbook of Chemistry and Physics, CRC Press: Beca Raton (2000).
R.A. Svehla, Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, NASA Technical Report R-132 (1962).
G.L. Price and J.A. Venables, Surf. Sci., 59, 509 (1976); doi:10.1016/0039-6028(76)90031-5.