Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mineralization of Chinese Medicine Wastewater and Power Generation Using an Improved Salt Bridge Microbial Fuel Cell
Corresponding Author(s) : Jiaquan Wang
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
High cost is still a problem facing the development of microbial fuel cells. Dual-chambered microbial fuel cells were constructed whose salt bridges substituted for proton membranes and were modified. The microbial fuel cell reactors were designed to test the potential for pollutant degradation and generated electricity using glucose and Chinese medicine wastewater. Experimental results showed that the salt walls structure microbial fuel cell was the best in microbial fuel cells of three kinds of structure in generated electricity and removal of chemical oxygen demand (COD). Then as a reactor by the microbial fuel cell of low resistance, the maximal power density was obtained was 100 mW/m2, the colour removal efficiency was 97 and 70 %, the value of BOD5/COD was 0.14 up to 0.26 and 0.14 up to 0.20 in closed circuit and open circuit, respectively. Results indicated that the microbial fuel cell of low resistance of salt wall had a better performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.B. A. Arends and W. Verstraete, Microb. Biotechnol., 5, 333 (2012); doi: 10.1111/j.1751-7915.2011.00302.x.
- B.E. Logan and K. Rabaey, Science, 337, 686 (2012); doi:10.1126/science.1217412.
- B.E. Logan and M. Elimelech, Nature, 488, 313 (2012); doi:10.1038/nature11477.
- Z. Du, H. Li and T. Gu, Biotechnol. Adv., 25, 464 (2007); doi:10.1016/j.biotechadv.2007.05.004.
- L. Huang, L. Gan, N. Wang, X. Quan, B.E. Logan and G. Chen, Biotechnol. Bioeng., 109, 2211 (2012); doi:10.1002/bit.24489.
- S. Cheng, D. Xing and B.E. Logan, Biosens. Bioelectron., 26, 1913 (2011); doi:10.1016/j.bios.2010.05.016.
- S.T. Oh, J.R. Kim, G.C. Premier, T.H. Lee, C. Kim and W.T. Sloan, Biotechnol. Adv., 28, 871 (2010); doi:10.1016/j.biotechadv.2010.07.008.
- B.E. Logan, Appl. Microbiol. Biotechnol., 85, 1665 (2010); doi:10.1007/s00253-009-2378-9.
- L. Zhuang, C. Feng, S. Zhou, Y. Li and Y. Wang, Process Biochem., 45, 929 (2010); doi:10.1016/j.procbio.2010.02.014.
- Y. Zuo, S. Cheng and B.E. Logan, Environ. Sci. Technol., 42, 6967 (2008); doi:10.1021/es801055r.
- Y. Zuo, S. Cheng, D. Call and B.E. Logan, Environ. Sci. Technol., 41, 3347 (2007); doi:10.1021/es0627601.
- B. Min, S. Cheng and B.E. Logan, Water Res., 39, 1675 (2005); doi:10.1016/j.watres.2005.02.002.
- S. Chen, J. Wang, X. Xia, C. Chen, J. Yang and Y. Zhu, Asian J. Chem., 24, 3997 (2012).
- B. Min, J.R. Kim, S.E. Oh, J.M. Regan and B.E. Logan, Water Res., 39, 4961 (2005); doi:10.1016/j.watres.2005.09.039.
- J. Sun, Y.- Hu, Z. Bi and Y.- Cao, Bioresour. Technol., 100, 3185 (2009); doi:10.1016/j.biortech.2009.02.002.
References
J.B. A. Arends and W. Verstraete, Microb. Biotechnol., 5, 333 (2012); doi: 10.1111/j.1751-7915.2011.00302.x.
B.E. Logan and K. Rabaey, Science, 337, 686 (2012); doi:10.1126/science.1217412.
B.E. Logan and M. Elimelech, Nature, 488, 313 (2012); doi:10.1038/nature11477.
Z. Du, H. Li and T. Gu, Biotechnol. Adv., 25, 464 (2007); doi:10.1016/j.biotechadv.2007.05.004.
L. Huang, L. Gan, N. Wang, X. Quan, B.E. Logan and G. Chen, Biotechnol. Bioeng., 109, 2211 (2012); doi:10.1002/bit.24489.
S. Cheng, D. Xing and B.E. Logan, Biosens. Bioelectron., 26, 1913 (2011); doi:10.1016/j.bios.2010.05.016.
S.T. Oh, J.R. Kim, G.C. Premier, T.H. Lee, C. Kim and W.T. Sloan, Biotechnol. Adv., 28, 871 (2010); doi:10.1016/j.biotechadv.2010.07.008.
B.E. Logan, Appl. Microbiol. Biotechnol., 85, 1665 (2010); doi:10.1007/s00253-009-2378-9.
L. Zhuang, C. Feng, S. Zhou, Y. Li and Y. Wang, Process Biochem., 45, 929 (2010); doi:10.1016/j.procbio.2010.02.014.
Y. Zuo, S. Cheng and B.E. Logan, Environ. Sci. Technol., 42, 6967 (2008); doi:10.1021/es801055r.
Y. Zuo, S. Cheng, D. Call and B.E. Logan, Environ. Sci. Technol., 41, 3347 (2007); doi:10.1021/es0627601.
B. Min, S. Cheng and B.E. Logan, Water Res., 39, 1675 (2005); doi:10.1016/j.watres.2005.02.002.
S. Chen, J. Wang, X. Xia, C. Chen, J. Yang and Y. Zhu, Asian J. Chem., 24, 3997 (2012).
B. Min, J.R. Kim, S.E. Oh, J.M. Regan and B.E. Logan, Water Res., 39, 4961 (2005); doi:10.1016/j.watres.2005.09.039.
J. Sun, Y.- Hu, Z. Bi and Y.- Cao, Bioresour. Technol., 100, 3185 (2009); doi:10.1016/j.biortech.2009.02.002.