Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chemical and Biological Characteristics of Ethanolic Extract of Tussilago farfara L. Flowers: Composition, Antimicrobial and Antioxidant Activities
Corresponding Author(s) : N. Sharonova
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
Tussilago farfara L. (Asteraceae) has a wide spectrum of biological reactivity, widely used in herbal medicine and has the potential for use in the agricultural sector. The ethanolic extract was obtained by maceration of freshly harvested flowers, followed by filtration of the extract and concentration with the help of a rotary evaporator. The chemical composition of ethanolic extract of Tussilago farfara L. was studied with the help of gas chromatography/mass spectrometry (GC/MS) method. It was found that the ethanolic extract of Tussilago farfara L. had antimicrobial reactivity against human pathogens and phytopathogens (bacteria and fungi). The values of the minimal inhibiting, bactericidal and fungicidal concentrations varied in the range of 2500-5000 μg/mL. The phytopathogenic fungus Alternaria solani St108 was the most sensitive to the components of ethanolic extract of Tussilago farfara L. Moderate antioxidant properties of ethanolic extract of Tussilago farfara L. at concentrations of 0.001 mg/mL and higher were revealed with the help of chemiluminescence analysis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Savary, A. Ficke, J.-N. Aubertot and C. Hollier, Food Security, 4, 519 (2012); https://doi.org/10.1007/s12571-012-0200-5.
- H.X. Xu, X.S. Zheng, Y.J. Yang, J.C. Tian, Y.H. Lu, K.H. Tan, K.L. Heong and Z.X. Lu, Crop Protection, 72, 144 (2015); https://doi.org/10.1016/j.cropro.2015.03.017.
- P.C. Stevenson, M.B. Isman and S.R. Belmain, Ind. Crop Prod., 110, 2 (2017); https://doi.org/10.1016/j.indcrop.2017.08.034.
- L.G. Copping and S.O. Duke, Pest Manag. Sci., 63, 524 (2007); https://doi.org/10.1002/ps.1378.
- N.E. El-Wakeil, Gesunde Pflanzen, 65, 125 (2013); https://doi.org/10.1007/s10343-013-0308-3.
- K.D. Gwinn, B.H. Ownley, S.E. Greene, M.M. Clark, C.L. Taylor, T.N. Springfield, D.J. Trently, J.F. Green, A. Reed and S.L. Hamilton, Phytopathology, 100 (2010); https://doi.org/10.1094/PHYTO-100-5-0493.
- S. Koc, B.S. Isgor, Y.G. Isgor, N.S. Moghaddam and O. Yildirim, Pharm. Biol., 53 (2015); https://doi.org/10.3109/13880209.2014.942788.
- B. Singh, P.M. Sahu and M.K. Sharma, Phytomedicine, 9, 355 (2002); https://doi.org/10.1078/0944-7113-00143.
- R. Lebada, A. Schreier, S. Scherz, C. Resch, L. Krenn and B. Kopp, Phytochem. Anal., 11, 366 (2000); https://doi.org/10.1002/1099-1565(200011/12)11:6<366::AID-PCA538>3.3.CO;2-T.
- S.Y. Xue, Z.Y. Li, H.J. Zhi, H.F. Sun, L.Z. Zhang, X.Q. Guo and X.M. Qin, Biochem. Syst. Ecol., 41, 6 (2012); https://doi.org/10.1016/j.bse.2011.11.003.
- CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Wayne, Pennsylvania, USA (2018).
- V. Kanagarajan, E.M. Ramanathan and M. Gopalakrishnan, Org. Med. Chem. Lett., 1, article no. 8 (2011); https://doi.org/10.1186/2191-2858-1-8.
- NCCLS, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, In: Approved Standard, Wayne, Pennsylvania, USA, edn 2 (2002).
- A.B. Vyshtakalyuk, V.E. Semenov, I.A. Sudakov, K.N. Bushmeleva, L.F. Gumarova, A.A. Parfenov, N.G. Nazarov, I.V. Galyametdinova and V. Zobov, Russ. Chem. Bull., 67, 705 (2018); https://doi.org/10.1007/s11172-018-2126-3.
- C. Desmarchelier, M. Repetto, J. Coussio, S. Llesuy and G. Ciccia, Int. J. Pharmacogn., 35, 288 (1997); https://doi.org/10.1076/phbi.35.4.288.13303.
- H. Jang, J.W. Lee, C. Lee, Q. Jin, J.Y. Choi, D. Lee, S.B. Han, Y. Kim, J.T. Hong, M.K. Lee and B.Y. Hwang, Arch. Pharm. Res., 39, 127 (2016); https://doi.org/10.1007/s12272-015-0667-7.
- H.J. Lim, G.Z. Dong, H.J. Lee and J.H. Ryu, J. Enzyme Inhib. Med. Chem., 30, 852 (2015); https://doi.org/10.3109/14756366.2014.965701.
- K. Qin, C.H. Liu, Y.X. Qi and K. Li, Asian J. Chem., 26, 3073 (2014); https://doi.org/10.14233/ajchem.2014.16685.
- S. Uysal, I. Senkardes, A. Mollica, G. Zengin, G. Bulut, A. Dogan, J. Glamoèlija, M. Sokovic, D. Lobine and F.M. Mahomoodally, J. Biomol. Struct. Dyn., 37, 3269 (2019); https://doi.org/10.1080/07391102.2018.1506361.
- P. Zhao, L. Li, Z.S. Tang and W.H. Li, Asian J. Chem., 24, 2707 (2012).
- M.R. Kim, J.Y. Lee, H.H. Lee, D.K. Aryal, Y.G. Kim, S.K. Kim, E.R. Woo and K.W. Kang, Food Chem. Toxicol., 44, 1299 (2006); https://doi.org/10.1016/j.fct.2006.02.007.
- D. Wu, M. Zhang, C.F. Zhang and Z.T. Wang, Biochem. Syst. Ecol., 36, 219 (2008); https://doi.org/10.1016/j.bse.2007.07.003.
- H. Gao, Y.-N. Huang, B. Gao, P.-Y. Xu, C. Inagaki and J. Kawabata, Food Chem., 106, 1195 (2008); https://doi.org/10.1016/j.foodchem.2007.07.064.
- A. Nedelcheva, N. Kostova and A. Sidjimov, Biotechnol. Biotecnol. Equip., 29, S1 (2015); https://doi.org/10.1080/13102818.2015.1047149.
- N. Smyrska-Wieleba, K.K. Wojtanowski and T. Mroczek, Phytochem. Lett., 20, 339 (2017); https://doi.org/10.1016/j.phytol.2016.11.009.
- A.M. Yang, Q. Shang, L. Yang, C.L. Li and H.J. Yuan, Chem. Nat. Compd., 53, 584 (2017); https://doi.org/10.1007/s10600-017-2058-4.
- A.M. Yang, A. Zhao, Z.S. Zheng, Q. Shang, F.L. Zhang, N. Han, L. Yang and C.L. Li, Chem. Nat. Compd., 54, 978 (2018); https://doi.org/10.1007/s10600-018-2527-4.
- S.D. Joshi, J. Ashwini, H.M. Vagdevi, V.P. Vaidya and G.S. Gadaginamath, Indian J. Pharm. Educ. Res., 44, 148 (2010).
- M. Ramasamy and U. Balasubramanian, Int. J. Sci. Nat., 3, 263 (2012).
References
S. Savary, A. Ficke, J.-N. Aubertot and C. Hollier, Food Security, 4, 519 (2012); https://doi.org/10.1007/s12571-012-0200-5.
H.X. Xu, X.S. Zheng, Y.J. Yang, J.C. Tian, Y.H. Lu, K.H. Tan, K.L. Heong and Z.X. Lu, Crop Protection, 72, 144 (2015); https://doi.org/10.1016/j.cropro.2015.03.017.
P.C. Stevenson, M.B. Isman and S.R. Belmain, Ind. Crop Prod., 110, 2 (2017); https://doi.org/10.1016/j.indcrop.2017.08.034.
L.G. Copping and S.O. Duke, Pest Manag. Sci., 63, 524 (2007); https://doi.org/10.1002/ps.1378.
N.E. El-Wakeil, Gesunde Pflanzen, 65, 125 (2013); https://doi.org/10.1007/s10343-013-0308-3.
K.D. Gwinn, B.H. Ownley, S.E. Greene, M.M. Clark, C.L. Taylor, T.N. Springfield, D.J. Trently, J.F. Green, A. Reed and S.L. Hamilton, Phytopathology, 100 (2010); https://doi.org/10.1094/PHYTO-100-5-0493.
S. Koc, B.S. Isgor, Y.G. Isgor, N.S. Moghaddam and O. Yildirim, Pharm. Biol., 53 (2015); https://doi.org/10.3109/13880209.2014.942788.
B. Singh, P.M. Sahu and M.K. Sharma, Phytomedicine, 9, 355 (2002); https://doi.org/10.1078/0944-7113-00143.
R. Lebada, A. Schreier, S. Scherz, C. Resch, L. Krenn and B. Kopp, Phytochem. Anal., 11, 366 (2000); https://doi.org/10.1002/1099-1565(200011/12)11:6<366::AID-PCA538>3.3.CO;2-T.
S.Y. Xue, Z.Y. Li, H.J. Zhi, H.F. Sun, L.Z. Zhang, X.Q. Guo and X.M. Qin, Biochem. Syst. Ecol., 41, 6 (2012); https://doi.org/10.1016/j.bse.2011.11.003.
CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Wayne, Pennsylvania, USA (2018).
V. Kanagarajan, E.M. Ramanathan and M. Gopalakrishnan, Org. Med. Chem. Lett., 1, article no. 8 (2011); https://doi.org/10.1186/2191-2858-1-8.
NCCLS, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, In: Approved Standard, Wayne, Pennsylvania, USA, edn 2 (2002).
A.B. Vyshtakalyuk, V.E. Semenov, I.A. Sudakov, K.N. Bushmeleva, L.F. Gumarova, A.A. Parfenov, N.G. Nazarov, I.V. Galyametdinova and V. Zobov, Russ. Chem. Bull., 67, 705 (2018); https://doi.org/10.1007/s11172-018-2126-3.
C. Desmarchelier, M. Repetto, J. Coussio, S. Llesuy and G. Ciccia, Int. J. Pharmacogn., 35, 288 (1997); https://doi.org/10.1076/phbi.35.4.288.13303.
H. Jang, J.W. Lee, C. Lee, Q. Jin, J.Y. Choi, D. Lee, S.B. Han, Y. Kim, J.T. Hong, M.K. Lee and B.Y. Hwang, Arch. Pharm. Res., 39, 127 (2016); https://doi.org/10.1007/s12272-015-0667-7.
H.J. Lim, G.Z. Dong, H.J. Lee and J.H. Ryu, J. Enzyme Inhib. Med. Chem., 30, 852 (2015); https://doi.org/10.3109/14756366.2014.965701.
K. Qin, C.H. Liu, Y.X. Qi and K. Li, Asian J. Chem., 26, 3073 (2014); https://doi.org/10.14233/ajchem.2014.16685.
S. Uysal, I. Senkardes, A. Mollica, G. Zengin, G. Bulut, A. Dogan, J. Glamoèlija, M. Sokovic, D. Lobine and F.M. Mahomoodally, J. Biomol. Struct. Dyn., 37, 3269 (2019); https://doi.org/10.1080/07391102.2018.1506361.
P. Zhao, L. Li, Z.S. Tang and W.H. Li, Asian J. Chem., 24, 2707 (2012).
M.R. Kim, J.Y. Lee, H.H. Lee, D.K. Aryal, Y.G. Kim, S.K. Kim, E.R. Woo and K.W. Kang, Food Chem. Toxicol., 44, 1299 (2006); https://doi.org/10.1016/j.fct.2006.02.007.
D. Wu, M. Zhang, C.F. Zhang and Z.T. Wang, Biochem. Syst. Ecol., 36, 219 (2008); https://doi.org/10.1016/j.bse.2007.07.003.
H. Gao, Y.-N. Huang, B. Gao, P.-Y. Xu, C. Inagaki and J. Kawabata, Food Chem., 106, 1195 (2008); https://doi.org/10.1016/j.foodchem.2007.07.064.
A. Nedelcheva, N. Kostova and A. Sidjimov, Biotechnol. Biotecnol. Equip., 29, S1 (2015); https://doi.org/10.1080/13102818.2015.1047149.
N. Smyrska-Wieleba, K.K. Wojtanowski and T. Mroczek, Phytochem. Lett., 20, 339 (2017); https://doi.org/10.1016/j.phytol.2016.11.009.
A.M. Yang, Q. Shang, L. Yang, C.L. Li and H.J. Yuan, Chem. Nat. Compd., 53, 584 (2017); https://doi.org/10.1007/s10600-017-2058-4.
A.M. Yang, A. Zhao, Z.S. Zheng, Q. Shang, F.L. Zhang, N. Han, L. Yang and C.L. Li, Chem. Nat. Compd., 54, 978 (2018); https://doi.org/10.1007/s10600-018-2527-4.
S.D. Joshi, J. Ashwini, H.M. Vagdevi, V.P. Vaidya and G.S. Gadaginamath, Indian J. Pharm. Educ. Res., 44, 148 (2010).
M. Ramasamy and U. Balasubramanian, Int. J. Sci. Nat., 3, 263 (2012).