Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication and Inversion of Pickering High Internal Phase Emulsions Stabilized by SiO2 Nanoparticles
Corresponding Author(s) : Haiou Zhou
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
Silicon dioxide nanoparticles were fabricated via sol-gel reaction and modified by ethacryloxypropyltrimethoxysilane (MPTMS) subsequently. The surface grafting degree of the functionalized SiO2 nanoparticles was determined by thermogravimetric analysis and the surface wettablity was investigated through measuring the contact angle. Subsequently W/O pickering emulsion was prepared by using the modified SiO2 nanoparticles. We studied the effect of particle wettability and concentrations on the emulsion stability, the droplet size and the upper limit of the internal phase volume fraction. Pickering high internal phase emulsions with volume fractions of up to 0.90 was obtained and phase inversion was observed above this value.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.R. Cameron, Polymer, 46, 1439 (2005); doi:10.1016/j.polymer.2004.11.097.
- V.G. Babak and M.J. Stebe, J. Dispers. Sci. Technol., 23, 1 (2002); doi:10.1080/01932690208984184.
- H.A. Bamfield, Copper in Encyclopedia of Emulsion Technology, vol. 3, p. 281 (1988).
- N. Jager-Lozer, J.-F. Tranchant, V. Alard, C. Vu, J.-L. Grossiord and P.C. Tchoreloff, Rheol. Acta, 37, 129 (1998); doi:10.1007/s003970050099.
- M.-P. Krafft and J.G. Riess, Angew. Chem., 106, 1146 (1994); doi:10.1002/ange.19941061013.
- J.G. Riess and J.G. Weers, Curr. Opin. Colloid Interface Sci., 1, 652 (1996); doi:10.1016/S1359-0294(96)80104-X.
- J.M. Williams, Langmuir, 7, 1370 (1991); doi:10.1021/la00055a014.
- K. Haibach, A. Menner, R. Powell and A. Bismarck, Polymer, 47, 4513 (2006); doi:10.1016/j.polymer.2006.03.114.
- A. Barbetta and N.R. Cameron, Macromolecules, 37, 3202 (2004); doi:10.1021/ma035944y.
- N.G. Eskandar, S. Simovic and C.A. Prestidge, J. Pharm. Sci., 99, 890 (2010); doi:10.1002/jps.21882.
- E. Dickinson, Curr. Opin. Colloid Interface Sci., 15, 40 (2010); doi:10.1016/j.cocis.2009.11.001.
- J. Frelichowska, M. Bolzinger, J. Pelletier, J. Valour and Y. Chevalier, Int. J. Pharm., 371, 56 (2009); doi:10.1016/j.ijpharm.2008.12.017.
- R. Aveyard, B.P. Binks and J.H. Clint, Adv. Colloid Interface Sci., 100-102, 503 (2003); doi:10.1016/S0001-8686(02)00069-6.
- B.P. Binks and S.O. Lumsdon, Langmuir, 16, 2539 (2000); doi:10.1021/la991081j.
References
N.R. Cameron, Polymer, 46, 1439 (2005); doi:10.1016/j.polymer.2004.11.097.
V.G. Babak and M.J. Stebe, J. Dispers. Sci. Technol., 23, 1 (2002); doi:10.1080/01932690208984184.
H.A. Bamfield, Copper in Encyclopedia of Emulsion Technology, vol. 3, p. 281 (1988).
N. Jager-Lozer, J.-F. Tranchant, V. Alard, C. Vu, J.-L. Grossiord and P.C. Tchoreloff, Rheol. Acta, 37, 129 (1998); doi:10.1007/s003970050099.
M.-P. Krafft and J.G. Riess, Angew. Chem., 106, 1146 (1994); doi:10.1002/ange.19941061013.
J.G. Riess and J.G. Weers, Curr. Opin. Colloid Interface Sci., 1, 652 (1996); doi:10.1016/S1359-0294(96)80104-X.
J.M. Williams, Langmuir, 7, 1370 (1991); doi:10.1021/la00055a014.
K. Haibach, A. Menner, R. Powell and A. Bismarck, Polymer, 47, 4513 (2006); doi:10.1016/j.polymer.2006.03.114.
A. Barbetta and N.R. Cameron, Macromolecules, 37, 3202 (2004); doi:10.1021/ma035944y.
N.G. Eskandar, S. Simovic and C.A. Prestidge, J. Pharm. Sci., 99, 890 (2010); doi:10.1002/jps.21882.
E. Dickinson, Curr. Opin. Colloid Interface Sci., 15, 40 (2010); doi:10.1016/j.cocis.2009.11.001.
J. Frelichowska, M. Bolzinger, J. Pelletier, J. Valour and Y. Chevalier, Int. J. Pharm., 371, 56 (2009); doi:10.1016/j.ijpharm.2008.12.017.
R. Aveyard, B.P. Binks and J.H. Clint, Adv. Colloid Interface Sci., 100-102, 503 (2003); doi:10.1016/S0001-8686(02)00069-6.
B.P. Binks and S.O. Lumsdon, Langmuir, 16, 2539 (2000); doi:10.1021/la991081j.