Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Entrapment of Glucose Oxidase in Reverse Micelle Microemulsion Systems for Glucose Detection in Lipid Based Food Products
Corresponding Author(s) : Rachana Sahney
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
Entrapment of glucose oxidase (GOx) enzyme in a new reverse micelle emulsion system was studied. The microemulsion consists of aqueous phase (buffered enzyme)/SPAN 85/n-decane. Critical micelle concentration (CMC) of surfactant-SPAN 85 in n-decane was determined using dynamic light scattering study and it was used to develop microemulsion system. Most stable and optically transparent microemulsion with entrapped glucose oxidase showed higher values of specific enzyme activity, maximum reaction rate (Vmax) and turn over number and low value of Michaelis-constant (Km) in comparison to homogeneous GOx (enzyme-glucose oxidase) system. The microemulsion system was successfully used to quantify D-glucose in lipid based food products without any sample preparation. Comparison of these results with chemical method (phenol-sulfuric acid method) and commercial kit method used in food industry validate the efficiency of the new proposed system. The study provides new information about the glucose content of some commonly consumed milk based products where nutritional labels do not accurately show true glucose content. These findings provide support for comprehensive glucose labeling to food products commonly used by the children.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.M. Popkin and W.R. Kenan Jr., Best Pract. Res. Clin. Endocrinol. Metab., 30, 373 (2016); https://doi.org/10.1016/j.beem.2016.05.001.
- https://www.fda.gov/food/guidanceregulation/guidancedocumentsregulatoryinformation/labelingnutrition/ucm385663.htm.
- https://foodsafetyhelpline.com/fssai-drafts-new-labelling-and-displayregulations-2018/.
- V. Andrés, M.D. Tenorio and M.J. Villanueva, Food Chem., 173, 1100 (2015); https://doi.org/10.1016/j.foodchem.2014.10.136.
- H. Kelebek, S. Selli, A. Canbas and T. Cabaroglu, Microchem. J., 91, 187 (2009); https://doi.org/10.1016/j.microc.2008.10.008.
- J.N. BeMiller, ed.: S.S. Nielsen, Carbohydrate Analysis, In: Food Analysis, Springer International Publishing: Cham. pp. 333-360 (2017).
- FSSAI, Manual of Methods of Analysis of Foods, In: Lab Manual 4. Government of India. p. 146 (2015).
- R. Monosik, M. Stredansky, J. Tkac and E. Sturdik, Food Anal. Methods, 5, 40 (2012); https://doi.org/10.1007/s12161-011-9222-4.
- L.F.P. Ferreira, M.E. Taqueda, M. Vitolo, A. Converti and A. Pessoa Jr., J. Biotechnol., 116, 411 (2005); https://doi.org/10.1016/j.jbiotec.2004.12.005.
- A. Kamyshny, D. Trofimova, S. Magdassi and A. Levashov, Colloids Surf. B Biointerfaces, 24, 177 (2002); https://doi.org/10.1016/S0927-7765(01)00238-7.
- N. Garti, Curr. Opin. Colloid Interface Sci., 8, 197 (2003); https://doi.org/10.1016/S1359-0294(03)00022-0.
- D. Mandal, M. Ghosh, S. Maiti, K. Das and P.K. Das, Colloids Surf. B Biointerfaces, 113, 442 (2014); https://doi.org/10.1016/j.colsurfb.2013.09.047.
- D.J. McClements, Soft Matter, 7, 2297 (2011); https://doi.org/10.1039/C0SM00549E.
- N.M. Correa, J.J. Silber, R.E. Riter and N.E. Levinger, Chem. Rev., 112, 4569 (2012); https://doi.org/10.1021/cr200254q.
- S. Ghani, H. Barzegar, M. Noshad and M. Hojjati, Int. J. Biol. Macromol., 112, 197 (2018); https://doi.org/10.1016/j.ijbiomac.2018.01.145.
- N.L. Klyachko and A.V. Levashov, Curr. Opin. Colloid Interface Sci., 8, 179 (2003); https://doi.org/10.1016/S1359-0294(03)00016-5.
- K. Tonova and Z. Lazarova, Biotechnol. Adv., 26, 516 (2008); https://doi.org/10.1016/j.biotechadv.2008.06.002.
- R.R. Baldwin, H.A. Campbell, R. Thiessen Jr. and G.J. Lorant, Food Technol., 7, 275 (1953).
- W.J. Stadelman and O.J. Cotterill, Enzyme Fermentation, In: Egg Science and Technology, CRC Press, p. 329 (1995).
- H. Bergmeyer, J. Bergmeyer and M. Grassl, Methods of Enzymatic Analysis; Volume 2: Samples, Reagents, Assessment of Results. 1983: Deerfield Beach, Florida, Verlag Chemie.
- J. Duley and R.S. Holmes, Anal. Biochem., 69, 164 (1975); https://doi.org/10.1016/0003-2697(75)90577-1.
- S.S. Nielsen, Phenol-Sulfuric Acid Method for Total Carbohydrates, In: Food Analysis Laboratory Manual, Springer-Verlag: USA, pp. 47- 53 (2010).
- A. Braga and I. Belo, eds.: M.A. Coelho and B.D. Ribeiro, Biocatalysis in Micellar Systems, In: White Biotechnology for Sustainable Chemistry, Royal Society of Chemistry, Chap. 7, pp. 178-193 (2015).
- H. Chen, L.-H. Liu, L.-S. Wang, C.-B. Ching, H.-W. Yu and Y.-Y. Yang, Adv. Funct. Mater., 18, 95 (2008); https://doi.org/10.1002/adfm.200600452.
- M. Dekker, K.V. Riet, B.H. Bijsterbosch, P. Fijneman and R. Hilhorst, Chem. Eng. Sci., 45, 2949 (1990); https://doi.org/10.1016/0009-2509(90)80186-I.
- D. Jayachandran, S. Chityala, A.A. Prabhu and V.V. Dasu, Protein Expr. Purif., 157, 1 (2019); https://doi.org/10.1016/j.pep.2019.01.002.
- M. Pires, M. Aires-Barros and J. Cabral, Biotechnol. Prog., 12, 290 (1996); https://doi.org/10.1021/bp950050l.
- K. Holmberg, Colloids Surf. B Biointerfaces, 168, 169 (2018); https://doi.org/10.1016/j.colsurfb.2017.12.002.
- S. Ichikawa, M. Imai and M. Shimizu, Biotechnol. Bioeng., 39, 20 (1992); https://doi.org/10.1002/bit.260390105.
- E. Melo, C. Carvalho, M. Aires-Barros, S. Costa and J. Cabral, Biotechnol. Bioeng., 58, 380 (1998); https://doi.org/10.1002/(SICI)1097-0290(19980520)58:4<380::AIDBIT5>3.0.CO;2-F.
- T. Tadros, P. Izquierdo, J. Esquena and C. Solans, Adv. Colloid Interface Sci., 108-109, 303 (2004); https://doi.org/10.1016/j.cis.2003.10.023.
- B.J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology and Physics, Courier Corporation (2000).
- A. Saxena, A. Bhattacharya, S. Kumar, I.R. Epstein and R. Sahney, J. Colloid Interface Sci., 490, 452 (2017); https://doi.org/10.1016/j.jcis.2016.11.030.
- M. Zulauf and H.F. Eicke, J. Phys. Chem., 83, 480 (1979); https://doi.org/10.1021/j100467a011.
- M.A. Sedgwick, D. Crans and N. Levinger, Langmuir, 25, 5496 (2009); https://doi.org/10.1021/la8035067.
- A. Koneva, E. Safonova, P. Kondrakhina, M. Vovk, A. Lezov, Y.S. Chernyshev and N. Smirnova, Colloids Surf. A Physicochem. Eng. Asp., 518, 273 (2017); https://doi.org/10.1016/j.colsurfa.2017.01.020.
- J. Su, D. Wang, L. Norbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan and S. Song, Anal. Chem., 89, 2531 (2017); https://doi.org/10.1021/acs.analchem.6b04729.
- P.L. Luisi, L. Magid and J.H. Fendler, Critical Revs. Biochem., 20, 409 (1986); https://doi.org/10.3109/10409238609081999.
- L. Thudi, L.S. Jasti, Y. Swarnalatha, N.W. Fadnavis, K. Mulani, S. Deokar and S. Ponrathnam, J. Mol. Catal., B Enzym., 74, 54 (2012); https://doi.org/10.1016/j.molcatb.2011.08.014.
- E. Mitsou, A. Xenakis and M. Zoumpanioti, Catalysts, 7, 52 (2017); https://doi.org/10.3390/catal7020052.
- M. Porras, C. Solans, C. González, A. Martínez, A. Guinart and J.M. Gutiérrez, Colloids Surf. A Physicochem. Eng. Asp., 249, 115 (2004); https://doi.org/10.1016/j.colsurfa.2004.08.060.
- M.A. Biasutti, E.B. Abuin, J.J. Silber, N.M. Correa and E.A. Lissi, Adv. Colloid Interface Sci., 136, 1 (2008); https://doi.org/10.1016/j.cis.2007.07.001.
- L. Gbicka and J. Pawlak, J. Mol. Catal., B: Enzym., 2, 185 (1997); https://doi.org/10.1016/S1381-1177(96)00022-7.
- E. Mitsou, E.P. Kalogianni, D. Georgiou, H. Stamatis, A. Xenakis and M. Zoumpanioti, Langmuir, 35, 150 (2019); https://doi.org/10.1021/acs.langmuir.8b03124.
- C. Oldfield, R.B. Freedman and B.H. Robinson, Faraday Discuss., 129, 247 (2005); https://doi.org/10.1039/B406483F.
- P. Mukherjee, S. Gupta, S. Rafiq, R. Yadav, V.K. Jain, J. Raval and P. Sen, Langmuir, 32, 1693 (2016); https://doi.org/10.1021/acs.langmuir.5b04429.
References
B.M. Popkin and W.R. Kenan Jr., Best Pract. Res. Clin. Endocrinol. Metab., 30, 373 (2016); https://doi.org/10.1016/j.beem.2016.05.001.
https://foodsafetyhelpline.com/fssai-drafts-new-labelling-and-displayregulations-2018/.
V. Andrés, M.D. Tenorio and M.J. Villanueva, Food Chem., 173, 1100 (2015); https://doi.org/10.1016/j.foodchem.2014.10.136.
H. Kelebek, S. Selli, A. Canbas and T. Cabaroglu, Microchem. J., 91, 187 (2009); https://doi.org/10.1016/j.microc.2008.10.008.
J.N. BeMiller, ed.: S.S. Nielsen, Carbohydrate Analysis, In: Food Analysis, Springer International Publishing: Cham. pp. 333-360 (2017).
FSSAI, Manual of Methods of Analysis of Foods, In: Lab Manual 4. Government of India. p. 146 (2015).
R. Monosik, M. Stredansky, J. Tkac and E. Sturdik, Food Anal. Methods, 5, 40 (2012); https://doi.org/10.1007/s12161-011-9222-4.
L.F.P. Ferreira, M.E. Taqueda, M. Vitolo, A. Converti and A. Pessoa Jr., J. Biotechnol., 116, 411 (2005); https://doi.org/10.1016/j.jbiotec.2004.12.005.
A. Kamyshny, D. Trofimova, S. Magdassi and A. Levashov, Colloids Surf. B Biointerfaces, 24, 177 (2002); https://doi.org/10.1016/S0927-7765(01)00238-7.
N. Garti, Curr. Opin. Colloid Interface Sci., 8, 197 (2003); https://doi.org/10.1016/S1359-0294(03)00022-0.
D. Mandal, M. Ghosh, S. Maiti, K. Das and P.K. Das, Colloids Surf. B Biointerfaces, 113, 442 (2014); https://doi.org/10.1016/j.colsurfb.2013.09.047.
D.J. McClements, Soft Matter, 7, 2297 (2011); https://doi.org/10.1039/C0SM00549E.
N.M. Correa, J.J. Silber, R.E. Riter and N.E. Levinger, Chem. Rev., 112, 4569 (2012); https://doi.org/10.1021/cr200254q.
S. Ghani, H. Barzegar, M. Noshad and M. Hojjati, Int. J. Biol. Macromol., 112, 197 (2018); https://doi.org/10.1016/j.ijbiomac.2018.01.145.
N.L. Klyachko and A.V. Levashov, Curr. Opin. Colloid Interface Sci., 8, 179 (2003); https://doi.org/10.1016/S1359-0294(03)00016-5.
K. Tonova and Z. Lazarova, Biotechnol. Adv., 26, 516 (2008); https://doi.org/10.1016/j.biotechadv.2008.06.002.
R.R. Baldwin, H.A. Campbell, R. Thiessen Jr. and G.J. Lorant, Food Technol., 7, 275 (1953).
W.J. Stadelman and O.J. Cotterill, Enzyme Fermentation, In: Egg Science and Technology, CRC Press, p. 329 (1995).
H. Bergmeyer, J. Bergmeyer and M. Grassl, Methods of Enzymatic Analysis; Volume 2: Samples, Reagents, Assessment of Results. 1983: Deerfield Beach, Florida, Verlag Chemie.
J. Duley and R.S. Holmes, Anal. Biochem., 69, 164 (1975); https://doi.org/10.1016/0003-2697(75)90577-1.
S.S. Nielsen, Phenol-Sulfuric Acid Method for Total Carbohydrates, In: Food Analysis Laboratory Manual, Springer-Verlag: USA, pp. 47- 53 (2010).
A. Braga and I. Belo, eds.: M.A. Coelho and B.D. Ribeiro, Biocatalysis in Micellar Systems, In: White Biotechnology for Sustainable Chemistry, Royal Society of Chemistry, Chap. 7, pp. 178-193 (2015).
H. Chen, L.-H. Liu, L.-S. Wang, C.-B. Ching, H.-W. Yu and Y.-Y. Yang, Adv. Funct. Mater., 18, 95 (2008); https://doi.org/10.1002/adfm.200600452.
M. Dekker, K.V. Riet, B.H. Bijsterbosch, P. Fijneman and R. Hilhorst, Chem. Eng. Sci., 45, 2949 (1990); https://doi.org/10.1016/0009-2509(90)80186-I.
D. Jayachandran, S. Chityala, A.A. Prabhu and V.V. Dasu, Protein Expr. Purif., 157, 1 (2019); https://doi.org/10.1016/j.pep.2019.01.002.
M. Pires, M. Aires-Barros and J. Cabral, Biotechnol. Prog., 12, 290 (1996); https://doi.org/10.1021/bp950050l.
K. Holmberg, Colloids Surf. B Biointerfaces, 168, 169 (2018); https://doi.org/10.1016/j.colsurfb.2017.12.002.
S. Ichikawa, M. Imai and M. Shimizu, Biotechnol. Bioeng., 39, 20 (1992); https://doi.org/10.1002/bit.260390105.
E. Melo, C. Carvalho, M. Aires-Barros, S. Costa and J. Cabral, Biotechnol. Bioeng., 58, 380 (1998); https://doi.org/10.1002/(SICI)1097-0290(19980520)58:4<380::AIDBIT5>3.0.CO;2-F.
T. Tadros, P. Izquierdo, J. Esquena and C. Solans, Adv. Colloid Interface Sci., 108-109, 303 (2004); https://doi.org/10.1016/j.cis.2003.10.023.
B.J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology and Physics, Courier Corporation (2000).
A. Saxena, A. Bhattacharya, S. Kumar, I.R. Epstein and R. Sahney, J. Colloid Interface Sci., 490, 452 (2017); https://doi.org/10.1016/j.jcis.2016.11.030.
M. Zulauf and H.F. Eicke, J. Phys. Chem., 83, 480 (1979); https://doi.org/10.1021/j100467a011.
M.A. Sedgwick, D. Crans and N. Levinger, Langmuir, 25, 5496 (2009); https://doi.org/10.1021/la8035067.
A. Koneva, E. Safonova, P. Kondrakhina, M. Vovk, A. Lezov, Y.S. Chernyshev and N. Smirnova, Colloids Surf. A Physicochem. Eng. Asp., 518, 273 (2017); https://doi.org/10.1016/j.colsurfa.2017.01.020.
J. Su, D. Wang, L. Norbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan and S. Song, Anal. Chem., 89, 2531 (2017); https://doi.org/10.1021/acs.analchem.6b04729.
P.L. Luisi, L. Magid and J.H. Fendler, Critical Revs. Biochem., 20, 409 (1986); https://doi.org/10.3109/10409238609081999.
L. Thudi, L.S. Jasti, Y. Swarnalatha, N.W. Fadnavis, K. Mulani, S. Deokar and S. Ponrathnam, J. Mol. Catal., B Enzym., 74, 54 (2012); https://doi.org/10.1016/j.molcatb.2011.08.014.
E. Mitsou, A. Xenakis and M. Zoumpanioti, Catalysts, 7, 52 (2017); https://doi.org/10.3390/catal7020052.
M. Porras, C. Solans, C. González, A. Martínez, A. Guinart and J.M. Gutiérrez, Colloids Surf. A Physicochem. Eng. Asp., 249, 115 (2004); https://doi.org/10.1016/j.colsurfa.2004.08.060.
M.A. Biasutti, E.B. Abuin, J.J. Silber, N.M. Correa and E.A. Lissi, Adv. Colloid Interface Sci., 136, 1 (2008); https://doi.org/10.1016/j.cis.2007.07.001.
L. Gbicka and J. Pawlak, J. Mol. Catal., B: Enzym., 2, 185 (1997); https://doi.org/10.1016/S1381-1177(96)00022-7.
E. Mitsou, E.P. Kalogianni, D. Georgiou, H. Stamatis, A. Xenakis and M. Zoumpanioti, Langmuir, 35, 150 (2019); https://doi.org/10.1021/acs.langmuir.8b03124.
C. Oldfield, R.B. Freedman and B.H. Robinson, Faraday Discuss., 129, 247 (2005); https://doi.org/10.1039/B406483F.
P. Mukherjee, S. Gupta, S. Rafiq, R. Yadav, V.K. Jain, J. Raval and P. Sen, Langmuir, 32, 1693 (2016); https://doi.org/10.1021/acs.langmuir.5b04429.