Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermodynamic Optimization and Calculation of LaCl3-MgCl2 System
Corresponding Author(s) : Yu Wang
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
The thermodynamic properties and phase diagram of the LaCl3-MgCl2 system were analyzed by means of the CALPHAD method in this work. Thermodynamic models were defined in order to describe the Gibbs energies of the individual phases and the model parameters were optimized from the experimental thermodynamic and phase diagram data. Based on measured phase equilibrium data and experimental thermo-chemical properties of the binary system, the phase diagram and the enthalpy of mixing of LaCl3-MgCl2 liquid were calculated. The present description of binary LaCl3-MgCl2 system showed the good agreement with the corresponding experimental data.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang and Y. Sun, Int. J. Thermophys., 32, 1942 (2011); doi:10.1007/s10765-011-1014-y.
- Y. Wang and Y. Sun, J. Phase Equilib. Diffus., 31, 421 (2010); doi:10.1007/s11669-010-9780-y.
- Y. Wang, G. Shao, S. Li, Y. Sun and Z. Qiao, J. Rare Earths, 27, 300 (2009); doi:10.1016/S1002-0721(08)60237-9.
- Y. Wang, Y. Sun, Z. Qiao, X. Ye, Z. Ma and X. Meng, Calphad, 29, 317 (2005); doi:10.1016/j.calphad.2005.05.004.
- Y. Sun, Y. Wang, Z. Ma, X. Meng, X. Ye and Z. Qiao, J. Phase Equilib. Diffus., 26, 616 (2005);
- G. Vogel and A. Schneider, Inorg. Nucl. Chem. Lett., 8, 513 (1972); doi:10.1016/0020-1650(72)80132-6.
- E. Enninga, G. Alberts and R. Blachnik, Thermochim. Acta, 64, 317 (1983); doi:10.1016/0040-6031(83)85007-2.
- A.D. Pelton and M. Blander, Metall. Trans., 17, 805 (1986); doi:10.1007/BF02657144.
- M. Blander and A.D. Pelton, Geochim. Cosmochim. Acta, 51, 85 (1987); doi:10.1016/0016-7037(87)90009-3.
- A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin and Y. Dessureault, Mater. Trans., 31, 651 (2000); doi:10.1007/s11663-000-0103-2.
References
Y. Wang and Y. Sun, Int. J. Thermophys., 32, 1942 (2011); doi:10.1007/s10765-011-1014-y.
Y. Wang and Y. Sun, J. Phase Equilib. Diffus., 31, 421 (2010); doi:10.1007/s11669-010-9780-y.
Y. Wang, G. Shao, S. Li, Y. Sun and Z. Qiao, J. Rare Earths, 27, 300 (2009); doi:10.1016/S1002-0721(08)60237-9.
Y. Wang, Y. Sun, Z. Qiao, X. Ye, Z. Ma and X. Meng, Calphad, 29, 317 (2005); doi:10.1016/j.calphad.2005.05.004.
Y. Sun, Y. Wang, Z. Ma, X. Meng, X. Ye and Z. Qiao, J. Phase Equilib. Diffus., 26, 616 (2005);
G. Vogel and A. Schneider, Inorg. Nucl. Chem. Lett., 8, 513 (1972); doi:10.1016/0020-1650(72)80132-6.
E. Enninga, G. Alberts and R. Blachnik, Thermochim. Acta, 64, 317 (1983); doi:10.1016/0040-6031(83)85007-2.
A.D. Pelton and M. Blander, Metall. Trans., 17, 805 (1986); doi:10.1007/BF02657144.
M. Blander and A.D. Pelton, Geochim. Cosmochim. Acta, 51, 85 (1987); doi:10.1016/0016-7037(87)90009-3.
A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin and Y. Dessureault, Mater. Trans., 31, 651 (2000); doi:10.1007/s11663-000-0103-2.