Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Novel Rare Earth Ion Fluorescent Probe towards the Trace Detection of 2,4,6-Trinitrotoluene Based on Fluorescence Resonance Energy Transfer
Corresponding Author(s) : Hong Chen
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
This paper reports a resonance energy transfer-fluorescence quenching of the core-shell structure of CaMoO4:Tb3+@SiO2 modified by amino group on the surface for the ultrasensitive and ultratrace detection of 2,4,6-trinitrotoluene (TNT) in solution environments. Organic amine was covalently modified onto the surface of silica shell to form a hybrid monolayer of amino group. The particle can specifically bind TNT species by the charge-transfer complexing or acid-base pairing interactions between electron-rich amine ligands and electron-deficient aromatic rings. The resultant TNT-amine complexes bound at the silica surface can strongly suppress the fluorescence emission of the chosen dye by the fluorescence resonance energy transfer (FRET) from CaMoO4:Tb3+ fluorescence donor to the irradiative TNT-amine acceptor through intermolecular polar-polar interactions at spatial proximity. The nanoparticle can sensitively detect down to 1 nM TNT with the use of only 10 μL of solution (2 pg TNT). The simple FRET-based nanoparticle sensors reported here exhibit a high and stable fluorescence brightness, strong analyte affinity and good assembly flexibility and can thus find many applications in the detection of ultratrace analytes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.I. Steinfeld and J. Wormhoudt, Ann. Rev. Phys. Chem., 49, 203 (1998); doi:10.1146/annurev.physchem.49.1.203.
- E.R. Goldman, I.L. Medintz, J.L. Whitley, A. Hayhurst, A.R. Clapp, H.T. Uyeda, J.R. Deschamps, M.E. Lassman and H. Mattoussi, J. Am. Chem. Soc., 127, 6744 (2005); doi:10.1021/ja043677l.
- I.L. Medintz, E.R. Goldman, M.E. Lassman, A. Hayhurst, A.W. Kusterbeck and J.R. Deschamps, Anal. Chem., 77, 365 (2005); doi:10.1021/ac048485n.
- D.M. Gao, Z.P. Zhang, M.H. Wu, C.G. Xie, G.J. Guan and D.P. Wang, J. Am. Chem. Soc., 129, 7859 (2007); doi:10.1021/ja070975k.
- D.M. Gao, Z.Y. Wang, B.H. Liu, L. Ni, M.H. Wu and Z.P. Zhang, Anal. Chem., 80, 8545 (2008); doi:10.1021/ac8014356.
- W. Stöber, A. Fink and E. Bohn, J. Colloid Interf. Sci., 26, 62 (1968); doi:10.1016/0021-9797(68)90272-5.
References
J.I. Steinfeld and J. Wormhoudt, Ann. Rev. Phys. Chem., 49, 203 (1998); doi:10.1146/annurev.physchem.49.1.203.
E.R. Goldman, I.L. Medintz, J.L. Whitley, A. Hayhurst, A.R. Clapp, H.T. Uyeda, J.R. Deschamps, M.E. Lassman and H. Mattoussi, J. Am. Chem. Soc., 127, 6744 (2005); doi:10.1021/ja043677l.
I.L. Medintz, E.R. Goldman, M.E. Lassman, A. Hayhurst, A.W. Kusterbeck and J.R. Deschamps, Anal. Chem., 77, 365 (2005); doi:10.1021/ac048485n.
D.M. Gao, Z.P. Zhang, M.H. Wu, C.G. Xie, G.J. Guan and D.P. Wang, J. Am. Chem. Soc., 129, 7859 (2007); doi:10.1021/ja070975k.
D.M. Gao, Z.Y. Wang, B.H. Liu, L. Ni, M.H. Wu and Z.P. Zhang, Anal. Chem., 80, 8545 (2008); doi:10.1021/ac8014356.
W. Stöber, A. Fink and E. Bohn, J. Colloid Interf. Sci., 26, 62 (1968); doi:10.1016/0021-9797(68)90272-5.