Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Simple Refluxing Route to Synthesize of Hexagonal ZnO Nanorods and their Optical Properties
Corresponding Author(s) : Renfa Zhu
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Zinc oxide nanorods with hexagonal cross section were prepared through a simple refluxing method in a one-pot aqueous solution. The as-prepared products are characterized by X-ray diffraction, field-emission scanning electron microscopy, UV-visible absorption spectrum and photoluminescence spectrum. The growth process of ZnO nanorods was simply investigated. The diameters of ZnO nanorods are in the range of 80-230 nm and the lengths are estimated to be 2.5-3.0 μm. UV-visible absorption spectrum indicates that the synthesized ZnO nanorods have weak quantum size effects. According to its photoluminescence spectrum obtained with an excitation wavelength of 325 nm, the main emission band of as-prepared ZnO nanorods is located at 403 nm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.A.L. Roy, A.B. Djurišić, W.K. Chan, J. Gao, H.F. Lui and C. Surya, Appl. Phys. Lett., 83, 141 (2003); doi:10.1063/1.1589184.
- H. Kind, H.Q. Yan, B. Messer, M. Law and P.D. Yang, Adv. Mater., 14, 158 (2002); doi:10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W.
- Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li and C.L. Lin, Appl. Phys. Lett., 84, 3654 (2004); doi:10.1063/1.1738932.
- Z.W. Pan, Z.R. Dai and Z.L. Wang, Science, 291, 1947 (2001); doi:10.1126/science.1058120.
- A.B. Kashyout, M. Soliman, M. El Gamal and M. Fathy, Mater. Chem. Phys., 90, 230 (2005); doi:10.1016/j.matchemphys.2004.11.031.
- X.Y. Kong, Y. Ding, R. Yang and Z.L. Wang, Science, 303, 1348 (2004); doi:10.1126/science.1092356.
- W.I. Park, D.H. Kim, S.-W. Jung and G.-C. Yi, Appl. Phys. Lett., 80, 4232 (2002); doi:10.1063/1.1482800.
- H.M. Hu, X.H. Huang, C.H. Deng, X.Y. Chen and Y.T. Qian, Mater. Chem. Phys., 106, 58 (2007); doi:10.1016/j.matchemphys.2007.05.016.
- G.Z. Wang, Y. Wang, M.Y. Yau, C.Y. To, C.J. Deng and D.H.L. Ng, Mater. Lett., 59, 3870 (2005); doi:10.1016/j.matlet.2005.07.023.
- S. Cho, D.S. Shim, S.H. Jung, E. Oh, B.R. Lee and K.H. Lee, Mater. Lett., 63, 739 (2009); doi:10.1016/j.matlet.2008.12.038.
- T. Alammar and A.V. Mudring, Mater. Lett., 63, 732 (2009); doi:10.1016/j.matlet.2008.12.035.
- W.J. Li, E.W. Shi, W.Z. Zhong and Z.W. Yin, J. Cryst. Growth, 203, 186 (1999); doi:10.1016/S0022-0248(99)00076-7.
References
V.A.L. Roy, A.B. Djurišić, W.K. Chan, J. Gao, H.F. Lui and C. Surya, Appl. Phys. Lett., 83, 141 (2003); doi:10.1063/1.1589184.
H. Kind, H.Q. Yan, B. Messer, M. Law and P.D. Yang, Adv. Mater., 14, 158 (2002); doi:10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W.
Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li and C.L. Lin, Appl. Phys. Lett., 84, 3654 (2004); doi:10.1063/1.1738932.
Z.W. Pan, Z.R. Dai and Z.L. Wang, Science, 291, 1947 (2001); doi:10.1126/science.1058120.
A.B. Kashyout, M. Soliman, M. El Gamal and M. Fathy, Mater. Chem. Phys., 90, 230 (2005); doi:10.1016/j.matchemphys.2004.11.031.
X.Y. Kong, Y. Ding, R. Yang and Z.L. Wang, Science, 303, 1348 (2004); doi:10.1126/science.1092356.
W.I. Park, D.H. Kim, S.-W. Jung and G.-C. Yi, Appl. Phys. Lett., 80, 4232 (2002); doi:10.1063/1.1482800.
H.M. Hu, X.H. Huang, C.H. Deng, X.Y. Chen and Y.T. Qian, Mater. Chem. Phys., 106, 58 (2007); doi:10.1016/j.matchemphys.2007.05.016.
G.Z. Wang, Y. Wang, M.Y. Yau, C.Y. To, C.J. Deng and D.H.L. Ng, Mater. Lett., 59, 3870 (2005); doi:10.1016/j.matlet.2005.07.023.
S. Cho, D.S. Shim, S.H. Jung, E. Oh, B.R. Lee and K.H. Lee, Mater. Lett., 63, 739 (2009); doi:10.1016/j.matlet.2008.12.038.
T. Alammar and A.V. Mudring, Mater. Lett., 63, 732 (2009); doi:10.1016/j.matlet.2008.12.035.
W.J. Li, E.W. Shi, W.Z. Zhong and Z.W. Yin, J. Cryst. Growth, 203, 186 (1999); doi:10.1016/S0022-0248(99)00076-7.