Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Solubility of Alkali Lignin in Dilute Solutions of [BMIm]Cl at Room Temperature
Corresponding Author(s) : Mingqiang Chen
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Dissolution of the alkali lignin by using ionic liquids will make the post treatment process become environment friendly. This paper designed an experiment to dissolve alkali lignin powder in a sequence of [BMIm]Cl dilute aqueous solutions at room-temperature and characterization by ultraviolet spectrometry. The results are as follows: (1) Both water and [BMIm]Cl can dissolve alkali lignin and [BMIm]Cl makes aqueous solution grow the structure selectivity. (2) The relationship between the dissolving amount of alkali lignin and the concentration of [BMIm]Cl solutions is not linear and the inflection point is nearby 0.002 g/L. (3) The solubility of alkali lignin in [BMIm]Cl dilute solutions at room-temperature is influenced by [BMIm]Cl concentration and dissolving time and can be fitted by using exponent equation. The key coefficient ti in fitting equation has differential exponent related to the [BMIm]Cl concentration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.R. Pinto, E.B. da Silva and A. Rodrigues, in eds.: C. Baskar, S. Baskar and R.S. Dhillon, Lignin as Source of Fine Chemicals: Vanillin and Syringaldehyde, Biomass Conversion, Springer Berlin Heidelberg, pp. 381-420 (2012).
- B. Saake and R. Lehnen, Lignin Ullmann's Encyclopedia of Industrial Chemistry (2007).
- Y. Tongqi, H. Jing, X. Feng and S. Runcang, Progress in Chemistry, 22, 472 (2010).
- R.P. Swatloski, S.K. Spear, J.D. Holbrey and R.D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002); doi:10.1021/ja025790m.
- J. Upfal, D.R. Macfarlane and S.A. Forsyth, Use of lignocellulosics solvated in ionic liquids for production of biofuels, WO2005/017252, (2005)..
- X. Honglu and S. Tiejun, Holzforschung, 60, 509 (2006); doi:10.1515/HF.2006.084.
- Y. Pu, N. Jiang and A.J. Ragauskas, J. Wood Chem. Technol., 27, 23 (2007); doi:10.1080/02773810701282330.
- Y. Fukaya, K. Hayashi, M. Wada and H. Ohno, Green Chem., 10, 44 (2008); doi:10.1039/b713289a.
- W. Li, N. Sun, B. Stoner, X. Jiang, X. Lu and R.D. Rogers, Green Chem., 13, 2038 (2011); doi:10.1039/c1gc15522a.
- I. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen and D.S. Argyropoulos, J. Agric. Food Chem., 55, 9142 (2007); doi:10.1021/jf071692e.
- S. Rayne and G. Mazza, Rapid dissolution of lignocellulosic plant materials in an ionic liquid, Nature Preceedings (http://hdl.handle.net/10101/npre.2007.637.1) (2007).
References
P.R. Pinto, E.B. da Silva and A. Rodrigues, in eds.: C. Baskar, S. Baskar and R.S. Dhillon, Lignin as Source of Fine Chemicals: Vanillin and Syringaldehyde, Biomass Conversion, Springer Berlin Heidelberg, pp. 381-420 (2012).
B. Saake and R. Lehnen, Lignin Ullmann's Encyclopedia of Industrial Chemistry (2007).
Y. Tongqi, H. Jing, X. Feng and S. Runcang, Progress in Chemistry, 22, 472 (2010).
R.P. Swatloski, S.K. Spear, J.D. Holbrey and R.D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002); doi:10.1021/ja025790m.
J. Upfal, D.R. Macfarlane and S.A. Forsyth, Use of lignocellulosics solvated in ionic liquids for production of biofuels, WO2005/017252, (2005)..
X. Honglu and S. Tiejun, Holzforschung, 60, 509 (2006); doi:10.1515/HF.2006.084.
Y. Pu, N. Jiang and A.J. Ragauskas, J. Wood Chem. Technol., 27, 23 (2007); doi:10.1080/02773810701282330.
Y. Fukaya, K. Hayashi, M. Wada and H. Ohno, Green Chem., 10, 44 (2008); doi:10.1039/b713289a.
W. Li, N. Sun, B. Stoner, X. Jiang, X. Lu and R.D. Rogers, Green Chem., 13, 2038 (2011); doi:10.1039/c1gc15522a.
I. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen and D.S. Argyropoulos, J. Agric. Food Chem., 55, 9142 (2007); doi:10.1021/jf071692e.
S. Rayne and G. Mazza, Rapid dissolution of lignocellulosic plant materials in an ionic liquid, Nature Preceedings (http://hdl.handle.net/10101/npre.2007.637.1) (2007).