Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of Graphene by Oxidation-Reduction Method
Corresponding Author(s) : Jing Wang
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Graphene nano sheets and graphene oxide were synthesized from natural flake graphite with Hummers and modified Hummers methods. By comparison the infrared spectrums of graphene, we found graphene oxide prepared by the modified Hummers method, in which a slight excess of concentrated sulfuric acid and excessive hydrogen peroxide was used to reduce the residual oxidant, could be reduced more completely and contains less oxygenated functional groups than Hummers method, showing that by controlling the experimental conditions and parameters of oxidation-reduction preparation process that we can reducted graphene oxide completely and get more perfect graphene crystal.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); doi:10.1126/science.1102896.
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov and A.K. Geim, Proc. Natl. Acad. Sci. USA, 102, 10451 (2005); doi:10.1073/pnas.0502848102.
- Z.Y. Juang, C.Y. Wu, C.W. Lo, W.-Y. Chen, C.-F. Huang, J.-C. Hwang, F.-R. Chen, K.-C. Leou and C.-H. Tsai, Carbon, 47, 2026 (2009); doi:10.1016/j.carbon.2009.03.051.
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B.H. Hong, Nature, 457, 706 (2009); doi:10.1038/nature07719.
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); doi:10.1016/j.carbon.2007.02.034.
- V.C. Tung, M.J. Allen, Y. Yang and R.B. Kaner, Nat. Nanotechnol., 4, 25 (2009); doi:10.1038/nnano.2008.329.
- B.C. Brodie, Ann. Chim. Phys., 59, 466 (1860).
- L. Staudenmaier, Ber. Dt. Sch. Chem. Ges., 31, 1481 (1898); doi:10.1002/cber.18980310237.
- W. Hummers Jr. and R.J. Offeman, Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); doi:10.1126/science.1102896.
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov and A.K. Geim, Proc. Natl. Acad. Sci. USA, 102, 10451 (2005); doi:10.1073/pnas.0502848102.
Z.Y. Juang, C.Y. Wu, C.W. Lo, W.-Y. Chen, C.-F. Huang, J.-C. Hwang, F.-R. Chen, K.-C. Leou and C.-H. Tsai, Carbon, 47, 2026 (2009); doi:10.1016/j.carbon.2009.03.051.
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B.H. Hong, Nature, 457, 706 (2009); doi:10.1038/nature07719.
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); doi:10.1016/j.carbon.2007.02.034.
V.C. Tung, M.J. Allen, Y. Yang and R.B. Kaner, Nat. Nanotechnol., 4, 25 (2009); doi:10.1038/nnano.2008.329.
B.C. Brodie, Ann. Chim. Phys., 59, 466 (1860).
L. Staudenmaier, Ber. Dt. Sch. Chem. Ges., 31, 1481 (1898); doi:10.1002/cber.18980310237.
W. Hummers Jr. and R.J. Offeman, Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.