Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cyclic Microwave-Assisted Metathetic Synthesis of SPION/Ca3V2O8:Er3+,Yb3+ Nanocomposites and Their Optical Properties
Corresponding Author(s) : Chang Sung Lim
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
Er3+/Yb3+ co-doped Ca3V2O8 (Ca3V2O8:Er3+/Yb3+) nanocomposites with superparamagnetic iron oxide nanoparticles (SPIONs) have been successfully synthesized by a cyclic microwave-assisted metathetic method followed by heat-treatment. The microstructure exhibited well-defined and homogeneous morphology with the Ca3V2O8:Er3+/Yb3+ particle size of 1-2 μm and Fe3O4 particle size of 100-500 nm. The Fe3O4 nonoparticles were self-preferentially crystallized and immobilized on the surface of Ca3V2O8:Er3+/Yb3+ particles. The synthesized SPION/Ca3V2O8:Er3+/Yb3+ nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Other optical properties were also examined using photoluminescence emission measurements and Raman spectroscopy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Liu, L. Tong, J. Shi and H. Yang, J. Alloy. Comp., 512, 361 (2012); doi:10.1016/j.jallcom.2011.09.100.
- L. Liu, L. Xiao and H.Y. Zhu, Chem. Phys. Lett., 539-540, 112 (2012); doi:10.1016/j.cplett.2012.04.063.
- Q. Wang, X. Yang, L. Yu and H. Yang, J. Alloy. Comp., 509, 9098 (2011); doi:10.1016/j.jallcom.2011.06.058.
- D. Wang, Z. Zou and J. Ye, Res. Chem. Intermed., 31, 433 (2005); doi:10.1163/1568567053956635.
- M. Kurzawa and A. Blonska-Tabero, J. Therm. Anal. Calorim., 77, 17 (2004); doi:10.1023/B:JTAN.0000033183.50187.d5.
- P. Parhi and V. Manivannan, Mater. Res. Bull., 43, 2966 (2008); doi:10.1016/j.materresbull.2007.12.003.
- S.S. Kim, H. Ikuta and M. Wakihara, Solid State Ion., 139, 57 (2001); doi:10.1016/S0167-2738(00)00816-X.
- P. Parhi, V. Manivannan, S. Kohli and P. Mccurdy, Bull. Mater. Sci., 31, 885 (2008); doi:10.1007/s12034-008-0141-y.
- V. Manivannan, P. Parhi and J. Howard, J. Cryst. Growth, 310, 2793 (2008); doi:10.1016/j.jcrysgro.2008.02.021.
- R. Szymczak, M. Baran, J. Fink-Finowicki, B. Krzymanska, P. Aleshkevych, H. Szymczak, S.N. Barilo, G.L. Bychkov and S.V. Shiryaev, J. Non-Cryst. Solids, 354, 4186 (2008); doi:10.1016/j.jnoncrysol.2008.06.082.
- T. Thongtem, A. Phuruangrat and S. Thongtem, J. Nanopart. Res., 12, 2287 (2010); doi:10.1007/s11051-009-9797-5.
- C.S. Lim, Mater. Res. Bull., 47, 4220 (2012); doi:10.1016/j.materresbull.2012.09.029.
- C.S. Lim, Asian J. Chem., 25, 63 (2013); doi:10.14233/ajchem.2013.12636A.
- S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
- C.S. Lim, J. Lumin., 132, 1774 (2012); doi:10.1016/j.jlumin.2012.02.024.
- C.S. Lim, Mater. Chem. Phys., 131, 714 (2012); doi:10.1016/j.matchemphys.2011.10.039.
- Y. Toyozawa and M. Inoue, J. Phys. Soc. Jpn., 21, 1663 (1966); doi:10.1143/JPSJ.21.1663.
- E.G. Reut, Izv. Akad. Nauk SSSR, Ser. Fiz., 43, 1186 (1979).
- Y. Zhang, N.A.W. Holzwarth and R.T. Williams, Phys. Rev. B, 57, 12738 (1998); doi:10.1103/PhysRevB.57.12738.
- J. Van Tol, Mol. Phys., 88, 803 (1996); doi:10.1080/00268979650026316.
- V.B. Mikhailik, H. Kraus, D. Wahl and M.S. Mykhaylyk, Phys. Status Solid B, 242, R17 (2005); doi:10.1002/pssb.200409087.
- T.T. Basiev, A.A. Sobol, Y.K. Voronko and P.G. Zverev, Opt. Mater., 15, 205 (2000); doi:10.1016/S0925-3467(00)00037-9.
- T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko and R.C. Powell, Opt. Mater., 11, 307 (1999); doi:10.1016/S0925-3467(98)00030-5.
References
D. Liu, L. Tong, J. Shi and H. Yang, J. Alloy. Comp., 512, 361 (2012); doi:10.1016/j.jallcom.2011.09.100.
L. Liu, L. Xiao and H.Y. Zhu, Chem. Phys. Lett., 539-540, 112 (2012); doi:10.1016/j.cplett.2012.04.063.
Q. Wang, X. Yang, L. Yu and H. Yang, J. Alloy. Comp., 509, 9098 (2011); doi:10.1016/j.jallcom.2011.06.058.
D. Wang, Z. Zou and J. Ye, Res. Chem. Intermed., 31, 433 (2005); doi:10.1163/1568567053956635.
M. Kurzawa and A. Blonska-Tabero, J. Therm. Anal. Calorim., 77, 17 (2004); doi:10.1023/B:JTAN.0000033183.50187.d5.
P. Parhi and V. Manivannan, Mater. Res. Bull., 43, 2966 (2008); doi:10.1016/j.materresbull.2007.12.003.
S.S. Kim, H. Ikuta and M. Wakihara, Solid State Ion., 139, 57 (2001); doi:10.1016/S0167-2738(00)00816-X.
P. Parhi, V. Manivannan, S. Kohli and P. Mccurdy, Bull. Mater. Sci., 31, 885 (2008); doi:10.1007/s12034-008-0141-y.
V. Manivannan, P. Parhi and J. Howard, J. Cryst. Growth, 310, 2793 (2008); doi:10.1016/j.jcrysgro.2008.02.021.
R. Szymczak, M. Baran, J. Fink-Finowicki, B. Krzymanska, P. Aleshkevych, H. Szymczak, S.N. Barilo, G.L. Bychkov and S.V. Shiryaev, J. Non-Cryst. Solids, 354, 4186 (2008); doi:10.1016/j.jnoncrysol.2008.06.082.
T. Thongtem, A. Phuruangrat and S. Thongtem, J. Nanopart. Res., 12, 2287 (2010); doi:10.1007/s11051-009-9797-5.
C.S. Lim, Mater. Res. Bull., 47, 4220 (2012); doi:10.1016/j.materresbull.2012.09.029.
C.S. Lim, Asian J. Chem., 25, 63 (2013); doi:10.14233/ajchem.2013.12636A.
S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
C.S. Lim, J. Lumin., 132, 1774 (2012); doi:10.1016/j.jlumin.2012.02.024.
C.S. Lim, Mater. Chem. Phys., 131, 714 (2012); doi:10.1016/j.matchemphys.2011.10.039.
Y. Toyozawa and M. Inoue, J. Phys. Soc. Jpn., 21, 1663 (1966); doi:10.1143/JPSJ.21.1663.
E.G. Reut, Izv. Akad. Nauk SSSR, Ser. Fiz., 43, 1186 (1979).
Y. Zhang, N.A.W. Holzwarth and R.T. Williams, Phys. Rev. B, 57, 12738 (1998); doi:10.1103/PhysRevB.57.12738.
J. Van Tol, Mol. Phys., 88, 803 (1996); doi:10.1080/00268979650026316.
V.B. Mikhailik, H. Kraus, D. Wahl and M.S. Mykhaylyk, Phys. Status Solid B, 242, R17 (2005); doi:10.1002/pssb.200409087.
T.T. Basiev, A.A. Sobol, Y.K. Voronko and P.G. Zverev, Opt. Mater., 15, 205 (2000); doi:10.1016/S0925-3467(00)00037-9.
T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko and R.C. Powell, Opt. Mater., 11, 307 (1999); doi:10.1016/S0925-3467(98)00030-5.