Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Simple and Rapid Transformation of Golden Apple Snail (Pomacea canaliculata) Shells to Calcium Carbonate, Monocalcium and Tricalcium Phosphates
Corresponding Author(s) : B. Boonchom
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
This study was designed to manage golden apple snail shells, the wastes created in large amount daily from the consumption of the meat of golden apple snail (Pomacea canaliculata) shells by transforming them to advanced compounds; calcium carbonate (CaCO3), monocalcium phosphate monohydrate [Ca(H2PO4)2·H2O], and tricalcium phosphate [Ca3(PO4)2]. They were successfully prepared by a rapid, simple, environmentally benign method using easily available and low-cost instrument. All synthesized samples were characterized by X-ray fluorescence, X-ray powder diffraction, FTIR spectroscopy and scanning electron microscopy to confirm the identities with the standard materials. The reproducibility and low-cost method suggest that it could be used in industry for a large-scale production of calcium carbonate, monocalcium phosphate monohydrate and tricalcium phosphate from golden apple snail shells as a replacement of natural mineral resources and be a good way to manage these shell wastes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Basumatary, Res. J. Chem. Sci., 3, 95 (2013).
- T.S. Sin, Crop Prot., 25, 1004 (2006); https://doi.org/10.1016/j.cropro.2006.01.012.
- A. Birla, B. Singh, S.N. Upadhyay and Y.C. Sharma, Bioresour. Technol., 106, 95 (2012); https://doi.org/10.1016/j.biortech.2011.11.065.
- P.-L. Boey, G.P. Maniam, S.A. Hamid and D.M.H. Ali, Fuel, 90, 2353 (2011); https://doi.org/10.1016/j.fuel.2011.03.002.
- S. Hu, Y. Wang and H. Han, Biomass Bioenergy, 35, 3627 (2011); https://doi.org/10.1016/j.biombioe.2011.05.009.
- M.R.R. Hamester, P.S. Balzer and D. Becker, Mater. Res., 15, 204 (2012); https://doi.org/10.1590/S1516-14392012005000014.
- I.J. Macha, L.S. Ozyegin, J. Chou, R. Samur, F.N. Oktar and B. BenNissan, J. Aust. Ceram. Soc., 49, 122 (2013); http://hdl.handle.net/10453/23750.
- K.N. Islam, M.Z.B.A. Bakar, M.M. Noordin, M.Z.B. Hussein, N.S.B.A. Rahman and M.E. Ali, Powder Technol., 213, 188 (2011); https://doi.org/10.1016/j.powtec.2011.07.031.
- H. Onoda and H. Nakanishi, Nat. Resour., 3, 71 (2012); https://doi.org/10.4236/nr.2012.32011.
- H. Onoda, M. Ichimura and A. Takenaka, Phosphorus Res. Bull., 24, 49 (2010); https://doi.org/10.3363/prb.24.49.
- N. Rungpin, S. Pavasupree, P. Prasassarakich and S. Poompradub, Polym. Compos., 36, 1620 (2015); https://doi.org/10.1002/pc.23070.
- J.N. Putro, N. Handoyo, V. Kristiani, S.A. Soenjaya, O.L. Ki, F.E. Soetaredjo, Y.-H. Ju and S. Ismadji, Ceram. Int., 40, 11453 (2014); https://doi.org/10.1016/j.ceramint.2014.03.162.
- S.M. de Paula, M.F.G. Huila, K. Araki and H.E. Toma, Micron, 41, 983 (2010); https://doi.org/10.1016/j.micron.2010.06.014.
- H. Onoda, R. Matsumoto and M. Tafu, Int. J. Environ. Prot., 3, 1 (2013).
- S.R. Paital and N.B. Dahotre, Mater. Sci. Eng. Rep., 66, 1 (2009); https://doi.org/10.1016/j.mser.2009.05.001.
- N. Viriya-empikul, P. Krasae, B. Puttasawat, B. Yoosuk, N. Chollacoop and K. Faungnawakij, Bioresour. Technol., 101, 3765 (2010); https://doi.org/10.1016/j.biortech.2009.12.079.
- M. Vallet-Regi and J.M. Gonzalez-Calbet, Prog. Solid State Chem., 32, 1 (2004); https://doi.org/10.1016/j.progsolidstchem.2004.07.001.
- D. Jiang and J. Zhang, Curr. Appl. Phys., 9, S252 (2009); https://doi.org/10.1016/j.cap.2009.01.029.
- B. Boonchom, J. Alloys Compd., 482, 199 (2009); https://doi.org/10.1016/j.jallcom.2009.03.157.
- L. Gan and R. Pilliar, Biomaterials, 25, 5303 (2004); https://doi.org/10.1016/j.biomaterials.2003.12.038.
- N. Rameshbabu and K.P. Rao, Curr. Appl. Phys., 9, S29 (2009); https://doi.org/10.1016/j.cap.2008.08.018.
- A. Ioitescu, G. Vlase, T. Vlase and N. Doca, J. Therm. Anal. Calorim., 88, 121 (2007); https://doi.org/10.1007/s10973-006-8022-3.
- M. Minamisawa, S. Yoshida and A. Uzawa, Powder Technol., 230, 20 (2012); https://doi.org/10.1016/j.powtec.2012.06.034.
- R. Xin, F. Ren and Y. Leng, Mater. Des., 31, 1691 (2010); https://doi.org/10.1016/j.matdes.2009.01.048.
- T.M. Volkmer, F. Lengler, O. Barreiro, V.C. Sousa and L.A. dos Santos, Powder Technol., 235, 599 (2013); https://doi.org/10.1016/j.powtec.2012.10.025.
- C.-K. Hsu, Mater. Chem. Phys., 80, 409 (2003); https://doi.org/10.1016/S0254-0584(02)00166-9.
- B. Mirhadi, B. Mehdikhani and N. Askari, Process Appl. Ceram., 5, 193 (2011); https://doi.org/10.2298/PAC1104193M.
- C. Zou, K. Cheng, W. Weng, C. Song, P. Du, G. Shen and G. Han, J. Alloys Compd., 509, 6852 (2011); https://doi.org/10.1016/j.jallcom.2011.03.158.
- B. Li, X. Chen, B. Guo, X. Wang, H. Fan and X. Zhang, Acta Biomater., 5, 134 (2009); https://doi.org/10.1016/j.actbio.2008.07.035.
- Y. Li, T. Wiliana and K.C. Tam, Mater. Res. Bull., 42, 820 (2007); https://doi.org/10.1016/j.materresbull.2006.08.027.
- J. Xu, D. F.R. Gilson and I. S. Butler, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 54, 1869 (1998); https://doi.org/10.1016/S1386-1425(98)00152-8.
- V. Videnova-Adrabinska, J. Mol. Struct., 177, 477 (1988); https://doi.org/10.1016/0022-2860(88)80114-5.
References
S. Basumatary, Res. J. Chem. Sci., 3, 95 (2013).
T.S. Sin, Crop Prot., 25, 1004 (2006); https://doi.org/10.1016/j.cropro.2006.01.012.
A. Birla, B. Singh, S.N. Upadhyay and Y.C. Sharma, Bioresour. Technol., 106, 95 (2012); https://doi.org/10.1016/j.biortech.2011.11.065.
P.-L. Boey, G.P. Maniam, S.A. Hamid and D.M.H. Ali, Fuel, 90, 2353 (2011); https://doi.org/10.1016/j.fuel.2011.03.002.
S. Hu, Y. Wang and H. Han, Biomass Bioenergy, 35, 3627 (2011); https://doi.org/10.1016/j.biombioe.2011.05.009.
M.R.R. Hamester, P.S. Balzer and D. Becker, Mater. Res., 15, 204 (2012); https://doi.org/10.1590/S1516-14392012005000014.
I.J. Macha, L.S. Ozyegin, J. Chou, R. Samur, F.N. Oktar and B. BenNissan, J. Aust. Ceram. Soc., 49, 122 (2013); http://hdl.handle.net/10453/23750.
K.N. Islam, M.Z.B.A. Bakar, M.M. Noordin, M.Z.B. Hussein, N.S.B.A. Rahman and M.E. Ali, Powder Technol., 213, 188 (2011); https://doi.org/10.1016/j.powtec.2011.07.031.
H. Onoda and H. Nakanishi, Nat. Resour., 3, 71 (2012); https://doi.org/10.4236/nr.2012.32011.
H. Onoda, M. Ichimura and A. Takenaka, Phosphorus Res. Bull., 24, 49 (2010); https://doi.org/10.3363/prb.24.49.
N. Rungpin, S. Pavasupree, P. Prasassarakich and S. Poompradub, Polym. Compos., 36, 1620 (2015); https://doi.org/10.1002/pc.23070.
J.N. Putro, N. Handoyo, V. Kristiani, S.A. Soenjaya, O.L. Ki, F.E. Soetaredjo, Y.-H. Ju and S. Ismadji, Ceram. Int., 40, 11453 (2014); https://doi.org/10.1016/j.ceramint.2014.03.162.
S.M. de Paula, M.F.G. Huila, K. Araki and H.E. Toma, Micron, 41, 983 (2010); https://doi.org/10.1016/j.micron.2010.06.014.
H. Onoda, R. Matsumoto and M. Tafu, Int. J. Environ. Prot., 3, 1 (2013).
S.R. Paital and N.B. Dahotre, Mater. Sci. Eng. Rep., 66, 1 (2009); https://doi.org/10.1016/j.mser.2009.05.001.
N. Viriya-empikul, P. Krasae, B. Puttasawat, B. Yoosuk, N. Chollacoop and K. Faungnawakij, Bioresour. Technol., 101, 3765 (2010); https://doi.org/10.1016/j.biortech.2009.12.079.
M. Vallet-Regi and J.M. Gonzalez-Calbet, Prog. Solid State Chem., 32, 1 (2004); https://doi.org/10.1016/j.progsolidstchem.2004.07.001.
D. Jiang and J. Zhang, Curr. Appl. Phys., 9, S252 (2009); https://doi.org/10.1016/j.cap.2009.01.029.
B. Boonchom, J. Alloys Compd., 482, 199 (2009); https://doi.org/10.1016/j.jallcom.2009.03.157.
L. Gan and R. Pilliar, Biomaterials, 25, 5303 (2004); https://doi.org/10.1016/j.biomaterials.2003.12.038.
N. Rameshbabu and K.P. Rao, Curr. Appl. Phys., 9, S29 (2009); https://doi.org/10.1016/j.cap.2008.08.018.
A. Ioitescu, G. Vlase, T. Vlase and N. Doca, J. Therm. Anal. Calorim., 88, 121 (2007); https://doi.org/10.1007/s10973-006-8022-3.
M. Minamisawa, S. Yoshida and A. Uzawa, Powder Technol., 230, 20 (2012); https://doi.org/10.1016/j.powtec.2012.06.034.
R. Xin, F. Ren and Y. Leng, Mater. Des., 31, 1691 (2010); https://doi.org/10.1016/j.matdes.2009.01.048.
T.M. Volkmer, F. Lengler, O. Barreiro, V.C. Sousa and L.A. dos Santos, Powder Technol., 235, 599 (2013); https://doi.org/10.1016/j.powtec.2012.10.025.
C.-K. Hsu, Mater. Chem. Phys., 80, 409 (2003); https://doi.org/10.1016/S0254-0584(02)00166-9.
B. Mirhadi, B. Mehdikhani and N. Askari, Process Appl. Ceram., 5, 193 (2011); https://doi.org/10.2298/PAC1104193M.
C. Zou, K. Cheng, W. Weng, C. Song, P. Du, G. Shen and G. Han, J. Alloys Compd., 509, 6852 (2011); https://doi.org/10.1016/j.jallcom.2011.03.158.
B. Li, X. Chen, B. Guo, X. Wang, H. Fan and X. Zhang, Acta Biomater., 5, 134 (2009); https://doi.org/10.1016/j.actbio.2008.07.035.
Y. Li, T. Wiliana and K.C. Tam, Mater. Res. Bull., 42, 820 (2007); https://doi.org/10.1016/j.materresbull.2006.08.027.
J. Xu, D. F.R. Gilson and I. S. Butler, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 54, 1869 (1998); https://doi.org/10.1016/S1386-1425(98)00152-8.
V. Videnova-Adrabinska, J. Mol. Struct., 177, 477 (1988); https://doi.org/10.1016/0022-2860(88)80114-5.