Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Production of Phosphate Biofertilizer Using Lignocellulosic Waste as Carrier Material
Corresponding Author(s) : M. Chandran
Asian Journal of Chemistry,
Vol. 26 No. 7 (2014): Vol 26 Issue 7
Abstract
Bagasse, a lignocellulosic waste of sugarcane industry is utilized for producing the phosphate biofertilizer. Phosphate biofertilizer is suited for all varieties of crops. It solubilizes the bound phosphate and contributes 20-30 % of phosphate required for crops. Selection of Bacillus megaterium was made due to its capability to survive and solubilize the rock phosphate as compared to other bacteria. By using biological and organic fertilizers a low input system can be carried out and it can be helpful for achieving the sustainability of farms. In order to reduce the cost and also to manage the waste, sugarcane bagasse, i.e., lignocellulosic waste is used in this experiment to replace the commercially used carrier material (lignite). The chemical parameters (protein, carbohydrate, chlorophyll contents) in vigna unguiculata plant grown using bagasse biofertilizer and lignite biofertilizer are comparable. The soil analysis also indicated signs of improvement in nutrient content, hence bagasse could be replaced in part of lignite in commercial production of biofertilizer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Adsul, A.J. Varma and D.V. Gokhale, Green Chem., 9, 58 (2007). doi:10.1039/B605839F.
- H.M. Baudel, C. Zaror and C.A.M. de Abreu, Ind. Crops Prod., 21, 309 (2005); doi:10.1016/j.indcrop.2004.04.013.
- B.N. Chakraborty, U. Chakraborty and A. Saha, World J. Agric. Sci., 6, 195 (2010).
- A.V. Yao, H. Bochow, S. Karimov, U. Boturov, S. Sanginboy and A.K. Sharipov, Arch. Phytopathol. Plant Protect., 39, 323 (2006); doi:10.1080/03235400600655347.
- C.Y. Wu, Z. Nia, Q. Tang and W.J. Huang, Agric. Forest Meteorol., 148, 1230 (2008); doi:10.1016/j.agrformet.2008.03.005.
- J. Murphy and J.P. Riley, Anal. Chim. Acta, 27, 31 (1962); doi:10.1016/S0003-2670(00)88444-5.
- M.A. Tabatabai and J.M. Bremner, Soil Biol. Biochem., 1, 301 (1969); doi:10.1016/0038-0717(69)90012-1.
- H. Rodriguez and R. Fraga, Biotechnol. Adv., 17, 319 (1999); doi:10.1016/S0734-9750(99)00014-2.
- S.I. Anwar, J. Eng. Sci. Technol., 5, 472 (2010).
- C. Martín, M. Marce and A.B. Thomsen, Bioresources, 3, 670 (2008).
- D.M. Kasangi, A.A. Shitandi, P.L. Shalo and S.K. Mbugua, Int. Food Res. J., 17, 721 (2010).
- O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, J. Biol. Chem., 193, 265 (1951).
- J. Cerning-Beroard, Cereal Chem., 52, 857 (1975).
References
M.G. Adsul, A.J. Varma and D.V. Gokhale, Green Chem., 9, 58 (2007). doi:10.1039/B605839F.
H.M. Baudel, C. Zaror and C.A.M. de Abreu, Ind. Crops Prod., 21, 309 (2005); doi:10.1016/j.indcrop.2004.04.013.
B.N. Chakraborty, U. Chakraborty and A. Saha, World J. Agric. Sci., 6, 195 (2010).
A.V. Yao, H. Bochow, S. Karimov, U. Boturov, S. Sanginboy and A.K. Sharipov, Arch. Phytopathol. Plant Protect., 39, 323 (2006); doi:10.1080/03235400600655347.
C.Y. Wu, Z. Nia, Q. Tang and W.J. Huang, Agric. Forest Meteorol., 148, 1230 (2008); doi:10.1016/j.agrformet.2008.03.005.
J. Murphy and J.P. Riley, Anal. Chim. Acta, 27, 31 (1962); doi:10.1016/S0003-2670(00)88444-5.
M.A. Tabatabai and J.M. Bremner, Soil Biol. Biochem., 1, 301 (1969); doi:10.1016/0038-0717(69)90012-1.
H. Rodriguez and R. Fraga, Biotechnol. Adv., 17, 319 (1999); doi:10.1016/S0734-9750(99)00014-2.
S.I. Anwar, J. Eng. Sci. Technol., 5, 472 (2010).
C. Martín, M. Marce and A.B. Thomsen, Bioresources, 3, 670 (2008).
D.M. Kasangi, A.A. Shitandi, P.L. Shalo and S.K. Mbugua, Int. Food Res. J., 17, 721 (2010).
O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, J. Biol. Chem., 193, 265 (1951).
J. Cerning-Beroard, Cereal Chem., 52, 857 (1975).