Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Nickel Nanoparticles and Characterization by Thermal Decomposition of Ni(2,4-di-ClPhAc)2(N2H4)1.5·H2O
Corresponding Author(s) : R. Manimekalai
Asian Journal of Chemistry,
Vol. 26 No. 7 (2014): Vol 26 Issue 7
Abstract
Nickel nanoparticles have been successfully prepared from nickel carboxylate hydrazinate hydrate as a precursor followed by thermal decomposition. Ni(2,4-di-ClPhAc)2(N2H4)1.5·H2O has been prepared and characterized by hydrazine, metal analyses, electronic spectra, infrared spectra and thermal analysis. The precursor shows multistep decomposition to form metallic Ni. The structure and morphology of as prepared Ni nanoparticles were characterized by powder X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope and selected area electron diffraction. The synthesized Ni nanoparticles have average particle size of about 28 nm. This simple and inexpensive synthetic procedure can also be employed to prepare other transition metal nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Del Bianco, F. Boscherini, A. Fiorini, M. Tamisari, F. Spizzo, M. Antisari and E. Piscopiello, Phys. Rev. B, 77, 094408 (2008); doi:10.1103/PhysRevB.77.094408.
- V. Srinivasan and J. Weidner, J. Electrochem. Soc., 144, L210 (1997); doi:10.1149/1.1837859.
- P.A. Nelson, J.M. Elliott, G.S. Attard and J.R. Owen, Chem. Mater., 14, 524 (2002); doi:10.1021/cm011021a.
- M.R. Thuler, R.L. Benbow and Z. Hurych, Phys. Rev. B, 27, 2082 (1983); doi:10.1103/PhysRevB.27.2082.
- L. Del Bianco, F. Boscherini, M. Tamisari, F. Spizzo, M. Vittori Antisari and E. Piscopiello, J. Phys. D., 41, 134008 (2008); doi:10.1088/0022-3727/41/13/134008.
- A.M. Huntz, M. Andrieux and R. Molins, Mater. Sci. Eng. A, 415, 21 (2006); doi:10.1016/j.msea.2005.08.225.
- K. Sakiyama, K. Koga, T. Seto, M. Hirasawa and T. Orii, J. Phys. Chem. B, 108, 523 (2004); doi:10.1021/jp035339x.
- A.C. Johnston-Peck, J. Wang and J.B. Tracy, ACS Nano, 3, 1077 (2009); doi:10.1021/nn900019x.
- R. Karmhag, T. Tesfamichael, G.A. Niklasson, E. Wackelgard and M. Nygren, J. Phys.D., 34, 400 (2001); doi:10.1088/0022-3727/34/3/325.
- V. Singh and V. Srinivas, J. Appl. Phys., 106, 053910 (2009); doi:10.1063/1.3212540.
- T. Hinotsu, B. Jeyadevan and C.N. Chinnasamy, J. Appl. Phys., 95, 7477 (2004); doi:10.1063/1.1688534.
- G.Y. Guo and H.H. Wang, Chin. J. Phys., 38, 949 (2000).
- V. Tzitzios, G. Basina, M. Gjoka, V. Alexandrakis, V. Georgakilas, D. Niarchos, N. Boukos and D. Petridis, Nanotechnology, 17, 3750 (2006); doi:10.1088/0957-4484/17/15/023.
- W.T. Zheng and C.Q. Sun, Solid State Chem., 34, 1 (2006); doi:10.1016/j.progsolidstchem.2005.12.001.
- V.L. Moruzzi, P.M. Marcus, K. Schwarz and P. Mohn, Phys. Rev. B, 34, 1784 (1986); doi:10.1103/PhysRevB.34.1784.
- H. He, R.H. Heist, B.L. McIntyre and T.N. Blanton, Nano Struct. Mater., 8, 879 (1997); doi:10.1016/S0965-9773(98)00016-6.
- M.J. Bonder, E.M. Kirkpatrick, T. Martin, S.-J. Kim, R.D. Rieke and D.L. Leslie-Pelecky, J. Magn. Magn. Mater., 222, 70 (2000); doi:10.1016/S0304-8853(00)00549-7.
- S.-L. Che, K. Takada, K. Takashima, O. Sakurai, K. Shinozaki and N. Mizutani, J. Mater. Sci., 34, 1313 (1999); doi:10.1023/A:1004546014867.
- G.B. Thompson, R. Banerjee, X.D. Zhang, P.M. Anderson and H.L. Fraser, Acta Mater., 50, 643 (2002); doi:10.1016/S1359-6454(01)00373-1.
- D.H. Chen and S.H. Wu, Chem. Mater., 12, 1354 (2000); doi:10.1021/cm991167y.
- M. Mandal, S. Kundu, T.K. Sau, S.M. Yusuf and T. Pal, Chem. Mater., 15, 3710 (2003); doi:10.1021/cm030246d.
- S.H. Wu and D.H. Chen, Chem. Lett., 33, 406 (2004); doi:10.1246/cl.2004.406.
- M. Green and P. O’Brien, Chem. Commun., 1912 (2001); doi:10.1039/b107108b.
- Y. Hou and S.J. Gao, Mater. Chem., 13, 1510 (2003); doi:10.1039/b303226d.
- S. Ramesh, Y. Koltypin, R. Prozorov and A. Gedanken, Chem. Mater., 9, 546 (1997); doi:10.1021/cm960390h.
- L.K. Kurihara, G.M. Chow and P.E. Schoen, Nanostruct Mater., 5, 607 (1995); doi:10.1016/0965-9773(95)00275-J.
- N. Chakroune, G. Viau, C. Ricolleau, F. Fievet-Vincent and F.J. Fievet, Mater. Chem., 13, 312 (2003); doi:10.1039/b209383a.
- G.M. Chow, J. Ding, J. Zhang, K.Y. Lee, D. Surani and S.H. Lawrence, Appl. Phys. Lett., 74, 1889 (1999); doi:10.1063/1.123703.
- H. Yin and G.M. Chow, J. Electrochem. Soc., C68, 149 (2002).
- P. Toneguzzo, G. Viau, O. Acher, F. Guillet, E. Bruneton, F. Fievet-Vincent and F.J. Fievet, Mater. Sci., 35, 3767 (2000); doi:10.1023/A:1004864927169.
- Y. He, X. Li and M.T. Swihart, Chem. Mater., 17, 1017 (2005); doi:10.1021/cm048128t.
- J.W. Park, E.H. Chae, S.H. Kim, J.H. Lee, J.W. Kim, S.M. Yoon and J.Y. Choi, Mater. Chem. Phys., 97, 371 (2006); doi:10.1016/j.matchemphys.2005.08.028.
- N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens and B. Chaudret, Nano Lett., 1, 565 (2001); doi:10.1021/nl0100522.
- O. Margeat, D. Ciuculescu, P. Lecante, M. Respaud, C. Amiens and B. Chaudret, Small, 3, 451 (2007); doi:10.1002/smll.200600329.
- A.I. Vogel, A Textbook of Quantitative Inorganic Analysis’, 4th Ed., Longman, UK (1985).
- K. Saravanan, S. Govindarajan and D. Chellappa, Synth React. Inorg. Met.-Org. Chem., 34, 353 (2004); doi:10.1081/SIM-120028306.
- A. Braibanti, F. Dallavalle, M.A. Pellinghelli and E. Leporati, Inorg. Chem., 7, 1430 (1968); doi:10.1021/ic50065a034.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York (1978).
- R. Boubekri, Z. Beji, K. Elkabous, F. Herbst, G. Viau, S. Ammar, F. Fiévet, H.J. von Bardeleben and A. Mauger, Chem. Mater., 21, 843 (2009); doi:10.1021/cm802605u.
References
L. Del Bianco, F. Boscherini, A. Fiorini, M. Tamisari, F. Spizzo, M. Antisari and E. Piscopiello, Phys. Rev. B, 77, 094408 (2008); doi:10.1103/PhysRevB.77.094408.
V. Srinivasan and J. Weidner, J. Electrochem. Soc., 144, L210 (1997); doi:10.1149/1.1837859.
P.A. Nelson, J.M. Elliott, G.S. Attard and J.R. Owen, Chem. Mater., 14, 524 (2002); doi:10.1021/cm011021a.
M.R. Thuler, R.L. Benbow and Z. Hurych, Phys. Rev. B, 27, 2082 (1983); doi:10.1103/PhysRevB.27.2082.
L. Del Bianco, F. Boscherini, M. Tamisari, F. Spizzo, M. Vittori Antisari and E. Piscopiello, J. Phys. D., 41, 134008 (2008); doi:10.1088/0022-3727/41/13/134008.
A.M. Huntz, M. Andrieux and R. Molins, Mater. Sci. Eng. A, 415, 21 (2006); doi:10.1016/j.msea.2005.08.225.
K. Sakiyama, K. Koga, T. Seto, M. Hirasawa and T. Orii, J. Phys. Chem. B, 108, 523 (2004); doi:10.1021/jp035339x.
A.C. Johnston-Peck, J. Wang and J.B. Tracy, ACS Nano, 3, 1077 (2009); doi:10.1021/nn900019x.
R. Karmhag, T. Tesfamichael, G.A. Niklasson, E. Wackelgard and M. Nygren, J. Phys.D., 34, 400 (2001); doi:10.1088/0022-3727/34/3/325.
V. Singh and V. Srinivas, J. Appl. Phys., 106, 053910 (2009); doi:10.1063/1.3212540.
T. Hinotsu, B. Jeyadevan and C.N. Chinnasamy, J. Appl. Phys., 95, 7477 (2004); doi:10.1063/1.1688534.
G.Y. Guo and H.H. Wang, Chin. J. Phys., 38, 949 (2000).
V. Tzitzios, G. Basina, M. Gjoka, V. Alexandrakis, V. Georgakilas, D. Niarchos, N. Boukos and D. Petridis, Nanotechnology, 17, 3750 (2006); doi:10.1088/0957-4484/17/15/023.
W.T. Zheng and C.Q. Sun, Solid State Chem., 34, 1 (2006); doi:10.1016/j.progsolidstchem.2005.12.001.
V.L. Moruzzi, P.M. Marcus, K. Schwarz and P. Mohn, Phys. Rev. B, 34, 1784 (1986); doi:10.1103/PhysRevB.34.1784.
H. He, R.H. Heist, B.L. McIntyre and T.N. Blanton, Nano Struct. Mater., 8, 879 (1997); doi:10.1016/S0965-9773(98)00016-6.
M.J. Bonder, E.M. Kirkpatrick, T. Martin, S.-J. Kim, R.D. Rieke and D.L. Leslie-Pelecky, J. Magn. Magn. Mater., 222, 70 (2000); doi:10.1016/S0304-8853(00)00549-7.
S.-L. Che, K. Takada, K. Takashima, O. Sakurai, K. Shinozaki and N. Mizutani, J. Mater. Sci., 34, 1313 (1999); doi:10.1023/A:1004546014867.
G.B. Thompson, R. Banerjee, X.D. Zhang, P.M. Anderson and H.L. Fraser, Acta Mater., 50, 643 (2002); doi:10.1016/S1359-6454(01)00373-1.
D.H. Chen and S.H. Wu, Chem. Mater., 12, 1354 (2000); doi:10.1021/cm991167y.
M. Mandal, S. Kundu, T.K. Sau, S.M. Yusuf and T. Pal, Chem. Mater., 15, 3710 (2003); doi:10.1021/cm030246d.
S.H. Wu and D.H. Chen, Chem. Lett., 33, 406 (2004); doi:10.1246/cl.2004.406.
M. Green and P. O’Brien, Chem. Commun., 1912 (2001); doi:10.1039/b107108b.
Y. Hou and S.J. Gao, Mater. Chem., 13, 1510 (2003); doi:10.1039/b303226d.
S. Ramesh, Y. Koltypin, R. Prozorov and A. Gedanken, Chem. Mater., 9, 546 (1997); doi:10.1021/cm960390h.
L.K. Kurihara, G.M. Chow and P.E. Schoen, Nanostruct Mater., 5, 607 (1995); doi:10.1016/0965-9773(95)00275-J.
N. Chakroune, G. Viau, C. Ricolleau, F. Fievet-Vincent and F.J. Fievet, Mater. Chem., 13, 312 (2003); doi:10.1039/b209383a.
G.M. Chow, J. Ding, J. Zhang, K.Y. Lee, D. Surani and S.H. Lawrence, Appl. Phys. Lett., 74, 1889 (1999); doi:10.1063/1.123703.
H. Yin and G.M. Chow, J. Electrochem. Soc., C68, 149 (2002).
P. Toneguzzo, G. Viau, O. Acher, F. Guillet, E. Bruneton, F. Fievet-Vincent and F.J. Fievet, Mater. Sci., 35, 3767 (2000); doi:10.1023/A:1004864927169.
Y. He, X. Li and M.T. Swihart, Chem. Mater., 17, 1017 (2005); doi:10.1021/cm048128t.
J.W. Park, E.H. Chae, S.H. Kim, J.H. Lee, J.W. Kim, S.M. Yoon and J.Y. Choi, Mater. Chem. Phys., 97, 371 (2006); doi:10.1016/j.matchemphys.2005.08.028.
N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens and B. Chaudret, Nano Lett., 1, 565 (2001); doi:10.1021/nl0100522.
O. Margeat, D. Ciuculescu, P. Lecante, M. Respaud, C. Amiens and B. Chaudret, Small, 3, 451 (2007); doi:10.1002/smll.200600329.
A.I. Vogel, A Textbook of Quantitative Inorganic Analysis’, 4th Ed., Longman, UK (1985).
K. Saravanan, S. Govindarajan and D. Chellappa, Synth React. Inorg. Met.-Org. Chem., 34, 353 (2004); doi:10.1081/SIM-120028306.
A. Braibanti, F. Dallavalle, M.A. Pellinghelli and E. Leporati, Inorg. Chem., 7, 1430 (1968); doi:10.1021/ic50065a034.
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York (1978).
R. Boubekri, Z. Beji, K. Elkabous, F. Herbst, G. Viau, S. Ammar, F. Fiévet, H.J. von Bardeleben and A. Mauger, Chem. Mater., 21, 843 (2009); doi:10.1021/cm802605u.