Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Characterization of Bulk and Alumina Supported Hausmannite Nanoparticles
Corresponding Author(s) : N.M. Deraz
Asian Journal of Chemistry,
Vol. 26 No. 7 (2014): Vol 26 Issue 7
Abstract
Bulk and alumina supported hausmannite Mn3O4 nano-particles were prepared by glycine assisted combustion method with different amounts of glycine. Scanning electron micrographs, energy dispersive X-ray and X-ray diffraction measurements display the structural and morphological properties of alumina and bulk and alumina supported hausmannite Mn3O4 nano-particles. The as prepared systems are spongy, homogeneous and fragile. XRD results showed alumina in all samples is amorphous phase. However, the produced manganese oxide is hausmannite Mn3O4 with spinel structure. The change in the amount of glycine and using of alumina carrier led to a significant change in the crystallite size, lattice constant and unit cell volume of Mn3O4 phase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Karaôglu, H. Deligoz, H. Sozeri, A. Baykal and M.S. Toprak, Nano-Micro Lett., 3, 25 (2011); doi:10.3786/nml.v3i1.p25-33.
- Y. Yamashita, K. Mukai, J. Yoshinobu, M. Lippmaa, T. Kinoshita and M. Kawasaki, Surf. Sci., 514, 54 (2002); doi:10.1016/S0039-6028(02)01607-2.
- A.H. de Vries, L. Hozoi, R. Broer and P. Bagus, Phys. Rev. B, 66, 035108 (2002); doi:10.1103/PhysRevB.66.035108.
- A.H. de Vries, L. Hozoi, R. Broer and P. Bagus, Phys. Rev. B, 66, 035108 (2002); doi:10.1103/PhysRevB.66.035108.
- H. Einaga and S. Futamura, J. Catal., 227, 304 (2004); doi:10.1016/j.jcat.2004.07.029.
- P. Lidström, J. Tierney, B. Wathey and J. Westman, Tetrahedron, 57, 9225 (2001); doi:10.1016/S0040-4020(01)00906-1.
- Y.L. Yang, X. Li, C.X. Guo, F.W. Zhao and F. Jia, Chem. Res. Chin. Univ., 25, 224 (2009).
- X. Fang, X. Lu, X. Guo, Y. Mao, Y.-S. Hu, J. Wang, Z. Wang, F. Wu, H. Liu and L. Chen, Electrochem. Commun., 12, 1520 (2010); doi:10.1016/j.elecom.2010.08.023.
- Y. Li, H. Tan, X.-Y. Yang, B. Goris, J. Verbeeck, S. Bals, P. Colson, R. Cloots, G. Van Tendeloo and B.-L. Su, Small, 7, 475 (2011); doi:10.1002/smll.201001403.
- B.Q. Jiang, Y. Liu and Z.B. Wu, J. Hazard. Mater., 162, 1249 (2009); doi:10.1016/j.jhazmat.2008.06.013.
- S.-B. Ma, K.-W. Nam, W.-S. Yoon, S.-M. Bak, X.-Q. Yang, B.-W. Cho and K.-B. Kim, Electrochem. Commun., 11, 1575 (2009); doi:10.1016/j.elecom.2009.05.058.
- X.Q. Yu, Y. He, J.P. Sun, K. Tang, H. Li, L.Q. Chen and X.J. Huang, Electrochem. Commun., 11, 791 (2009); doi:10.1016/j.elecom.2009.01.040.
- Z.H. Wang, D.Y. Geng, Y.J. Zhang and Z.D. Zhang, J. Cryst. Growth, 310, 4148 (2008); doi:10.1016/j.jcrysgro.2008.06.025.
- Y.C. Zhang, T. Qiao and X. Ya Hu, J. Solid State Chem., 177, 4093 (2004); doi:10.1016/j.jssc.2004.05.034.
- M. Anilkumar and V. Ravi, Mater. Res. Bull., 40, 605 (2005); doi:10.1016/j.materresbull.2005.01.009.
- L.X. Yang, Y.J. Zhu, H. Tong, W.W. Wang and G.F. Cheng, J. Solid State Chem., 179, 1225 (2006); doi:10.1016/j.jssc.2006.01.033.
- K.A.M. Ahmed, Q. Zeng, K. Wu and K. Huang, J. Solid State Chem., 183, 744 (2010); doi:10.1016/j.jssc.2010.01.015.
- Y.Q. Chang, X.Y. Xu, X.H. Luo, C.P. Chen and D.P. Yu, J. Cryst. Growth, 264, 232 (2004); doi:10.1016/j.jcrysgro.2003.11.117.
- J. Zhang, J. Du, H. Wang, J. Wang, Z. Qu and L. Jia, Mater. Lett., 65, 2565 (2011); doi:10.1016/j.matlet.2011.05.061.
- F. Giovannelli, C. Autret-Lambert, C. Mathieu, T. Chartier, F. Delorme, A. Seron, J. Solid State Chem. 192, 109 (2012); doi:10.1016/j.jssc.2012.04.006.
- C. Chen, G.J. Ding, D. Zhang, Z. Jiao, M.H. Wu, C.H. Shek, C.M.L. Wu, J.K.L. Lai and Z. Chen, Nanoscale, 4, 2590 (2012); doi:10.1039/c2nr12079h.
- Y.C. Zhang, T. Qiao and X. Ya Hu, J. Solid State Chem., 177, 4093 (2004); doi:10.1016/j.jssc.2004.05.034.
- Y.Q. Chang, D.P. Yu, Y. Long, J. Xu, X.H. Luo and R.C. Ye, J. Cryst. Growth, 279, 88 (2005); doi:10.1016/j.jcrysgro.2005.01.084.
- J. Du, Y. Gao, L. Chai, G. Zou, Y. Li and Y. Qian, Nanotechnology, 17, 4923 (2006); doi:10.1088/0957-4484/17/19/024.
- M. Salavati-Niasari, F. Davar and M. Mazaheri, Polyhedron, 27, 3467 (2008); doi:10.1016/j.poly.2008.04.015.
- I.K. Gopalakrishnan, N. Bagkar, R. Ganguly and S.K. Kulshreshtha, J. Cryst. Growth, 280, 436 (2005); doi:10.1016/j.jcrysgro.2005.03.060.
- Y. Hu, J. Chen, X. Xue and T. Li, Mater. Lett., 60, 383 (2006); doi:10.1016/j.matlet.2005.08.056.
- S.K. Apte, S.D. Naik, R.S. Sonawane, B.B. Kale, N. Pavaskar, A.B. Mandale and B.K. Das, Mater. Res. Bull., 41, 647 (2006); doi:10.1016/j.materresbull.2005.08.028.
- Z.W. Chen, J.K.L. Lai and C.H. Shek, Appl. Phys. Lett., 86, 181911 (2005); doi:10.1063/1.1923753.
- B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesly Publishing Co. Inc., Ch. 14 (1976).
- R. Craciun, Catal. Lett., 55, 25 (1998); doi:10.1023/A:1019049921489.
- N.-A.M. Deraz, M.A. El-Sayed and A.A. El-Aal, Adsorp. Sci. Technol., 19, 541 (2001); doi:10.1260/0263617011494385.
- F.A. Kroger, Chemistry of Imperfect Crystals, North-Holland, Amsterdam (1964).
References
E. Karaôglu, H. Deligoz, H. Sozeri, A. Baykal and M.S. Toprak, Nano-Micro Lett., 3, 25 (2011); doi:10.3786/nml.v3i1.p25-33.
Y. Yamashita, K. Mukai, J. Yoshinobu, M. Lippmaa, T. Kinoshita and M. Kawasaki, Surf. Sci., 514, 54 (2002); doi:10.1016/S0039-6028(02)01607-2.
A.H. de Vries, L. Hozoi, R. Broer and P. Bagus, Phys. Rev. B, 66, 035108 (2002); doi:10.1103/PhysRevB.66.035108.
A.H. de Vries, L. Hozoi, R. Broer and P. Bagus, Phys. Rev. B, 66, 035108 (2002); doi:10.1103/PhysRevB.66.035108.
H. Einaga and S. Futamura, J. Catal., 227, 304 (2004); doi:10.1016/j.jcat.2004.07.029.
P. Lidström, J. Tierney, B. Wathey and J. Westman, Tetrahedron, 57, 9225 (2001); doi:10.1016/S0040-4020(01)00906-1.
Y.L. Yang, X. Li, C.X. Guo, F.W. Zhao and F. Jia, Chem. Res. Chin. Univ., 25, 224 (2009).
X. Fang, X. Lu, X. Guo, Y. Mao, Y.-S. Hu, J. Wang, Z. Wang, F. Wu, H. Liu and L. Chen, Electrochem. Commun., 12, 1520 (2010); doi:10.1016/j.elecom.2010.08.023.
Y. Li, H. Tan, X.-Y. Yang, B. Goris, J. Verbeeck, S. Bals, P. Colson, R. Cloots, G. Van Tendeloo and B.-L. Su, Small, 7, 475 (2011); doi:10.1002/smll.201001403.
B.Q. Jiang, Y. Liu and Z.B. Wu, J. Hazard. Mater., 162, 1249 (2009); doi:10.1016/j.jhazmat.2008.06.013.
S.-B. Ma, K.-W. Nam, W.-S. Yoon, S.-M. Bak, X.-Q. Yang, B.-W. Cho and K.-B. Kim, Electrochem. Commun., 11, 1575 (2009); doi:10.1016/j.elecom.2009.05.058.
X.Q. Yu, Y. He, J.P. Sun, K. Tang, H. Li, L.Q. Chen and X.J. Huang, Electrochem. Commun., 11, 791 (2009); doi:10.1016/j.elecom.2009.01.040.
Z.H. Wang, D.Y. Geng, Y.J. Zhang and Z.D. Zhang, J. Cryst. Growth, 310, 4148 (2008); doi:10.1016/j.jcrysgro.2008.06.025.
Y.C. Zhang, T. Qiao and X. Ya Hu, J. Solid State Chem., 177, 4093 (2004); doi:10.1016/j.jssc.2004.05.034.
M. Anilkumar and V. Ravi, Mater. Res. Bull., 40, 605 (2005); doi:10.1016/j.materresbull.2005.01.009.
L.X. Yang, Y.J. Zhu, H. Tong, W.W. Wang and G.F. Cheng, J. Solid State Chem., 179, 1225 (2006); doi:10.1016/j.jssc.2006.01.033.
K.A.M. Ahmed, Q. Zeng, K. Wu and K. Huang, J. Solid State Chem., 183, 744 (2010); doi:10.1016/j.jssc.2010.01.015.
Y.Q. Chang, X.Y. Xu, X.H. Luo, C.P. Chen and D.P. Yu, J. Cryst. Growth, 264, 232 (2004); doi:10.1016/j.jcrysgro.2003.11.117.
J. Zhang, J. Du, H. Wang, J. Wang, Z. Qu and L. Jia, Mater. Lett., 65, 2565 (2011); doi:10.1016/j.matlet.2011.05.061.
F. Giovannelli, C. Autret-Lambert, C. Mathieu, T. Chartier, F. Delorme, A. Seron, J. Solid State Chem. 192, 109 (2012); doi:10.1016/j.jssc.2012.04.006.
C. Chen, G.J. Ding, D. Zhang, Z. Jiao, M.H. Wu, C.H. Shek, C.M.L. Wu, J.K.L. Lai and Z. Chen, Nanoscale, 4, 2590 (2012); doi:10.1039/c2nr12079h.
Y.C. Zhang, T. Qiao and X. Ya Hu, J. Solid State Chem., 177, 4093 (2004); doi:10.1016/j.jssc.2004.05.034.
Y.Q. Chang, D.P. Yu, Y. Long, J. Xu, X.H. Luo and R.C. Ye, J. Cryst. Growth, 279, 88 (2005); doi:10.1016/j.jcrysgro.2005.01.084.
J. Du, Y. Gao, L. Chai, G. Zou, Y. Li and Y. Qian, Nanotechnology, 17, 4923 (2006); doi:10.1088/0957-4484/17/19/024.
M. Salavati-Niasari, F. Davar and M. Mazaheri, Polyhedron, 27, 3467 (2008); doi:10.1016/j.poly.2008.04.015.
I.K. Gopalakrishnan, N. Bagkar, R. Ganguly and S.K. Kulshreshtha, J. Cryst. Growth, 280, 436 (2005); doi:10.1016/j.jcrysgro.2005.03.060.
Y. Hu, J. Chen, X. Xue and T. Li, Mater. Lett., 60, 383 (2006); doi:10.1016/j.matlet.2005.08.056.
S.K. Apte, S.D. Naik, R.S. Sonawane, B.B. Kale, N. Pavaskar, A.B. Mandale and B.K. Das, Mater. Res. Bull., 41, 647 (2006); doi:10.1016/j.materresbull.2005.08.028.
Z.W. Chen, J.K.L. Lai and C.H. Shek, Appl. Phys. Lett., 86, 181911 (2005); doi:10.1063/1.1923753.
B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesly Publishing Co. Inc., Ch. 14 (1976).
R. Craciun, Catal. Lett., 55, 25 (1998); doi:10.1023/A:1019049921489.
N.-A.M. Deraz, M.A. El-Sayed and A.A. El-Aal, Adsorp. Sci. Technol., 19, 541 (2001); doi:10.1260/0263617011494385.
F.A. Kroger, Chemistry of Imperfect Crystals, North-Holland, Amsterdam (1964).