Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication of MgFe2O4-ZnO Nanocomposites for Photocatalysis of Organic Pollutants under Solar Light Radiation
Corresponding Author(s) : B.S. Prathibha
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
MgFe2O4, ZnO and MgFe2O4-ZnO samples were successfully prepared through low temperature solution combustion route. The structural and morphological investigation were accomplished by PXRD, HRSEM, UV-visible and FTIR. The PXRD results point towards the reduced size of synthesized nanocomposites, which was further confirmed by HRSEM studies. Optical properties of the prepared samples were examined by UV-visible spectroscopy. The band gap seems to be widened for prepared nanocomposites compared to pure MgFe2O4. The photocatalytic degradation of methylene blue under sunlight was superior in contrast to pure MgFe2O4 and ZnO. MgFe2O4-ZnO (1:1) acts as the most effective photocatalyst activity compared to pure MgFe2O4 and ZnO. EIS data was proven to be an efficient tool for understanding the electronic properties for photocatalytic studies. The enhanced sunlight-driven photocatalytic activities of MgFe2O4-ZnO nanocomposite is supported by the factors such as quantization effect, band gap widening and efficient charge separation. MgFe2O4-ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications. Additionally, scavenging test was conducted to know the role of all active species during photoelectrocatalysis. This work presents a facile and effective route for the construction of MgFe2O4-ZnO nanocomposites with intriguing structures and multiple functions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.Y. Zhang, C.S. Li, F.Y. Cheng and J. Chen, Sens. Actuators B, 120, 403 (2007); https://doi.org/10.1016/j.snb.2006.02.034.
- X.Y. Li, Y. Hou, Q.D. Zhao, W. Teng, X.J. Hu and G.H. Chen, Chemosphere, 82, 581 (2011); https://doi.org/10.1016/j.chemosphere.2010.09.068.
- P. Laokul, V. Amornkitbamrung, S. Seraphin and S. Maensiri, Curr. Appl. Phys., 11, 101 (2011); https://doi.org/10.1016/j.cap.2010.06.027.
- S.H. Xu, D.L. Feng and W.F. Shangguan, J. Phys. Chem. C, 113, 2463 (2009); https://doi.org/10.1021/jp806704y.
- S.W. da Silva, T.F.O. Melo, M.A.G. Soler, E.C.D. Lima, A.F. da Silva and P.C. Morais, IEEE Trans. Magn., 39, 2645 (2003); https://doi.org/10.1109/TMAG.2003.815540.
- J.C. Fu, J.L. Zhang, C.H. Zhao, Y. Peng, X.D. Li, Y.M. He, Z.X. Zhang, X.J. Pan, N.J. Mellors and E.Q. Xie, J. Alloy. Compd., 577, 97 (2013); https://doi.org/10.1016/j.jallcom.2013.04.177.
- X.Z. Yuan, H. Wang, Y. Wu, X.H. Chen, G.M. Zeng, L.J. Leng and C. Zhang, Catal. Commun., 61, 62 (2015); https://doi.org/10.1016/j.catcom.2014.12.003.
- H.G. Kim, P.H. Borse, J.S. Jang, E.D. Jeong, O.S. Jung, Y.J. Suh and J.S. Lee, Chem. Commun., 5889 (2009); https://doi.org/10.1039/b911805e.
- J.G. Lee, H.M. Lee, C.S. Kim and Y.J. Oh, J. Magn. Magn. Mater., 177-181, 900 (1998); https://doi.org/10.1016/S0304-8853(97)00925-6.
- K. Maaz, A. Mumtaz, S.K. Hasanain and A. Ceylan, J. Magn. Magn. Mater., 308, 289 (2007); https://doi.org/10.1016/j.jmmm.2006.06.003.
- R. Sani, A. Beitollahi, Y.V. Maksimov and I.P. Suzdalev, J. Mater. Sci., 42, 2126 (2007); https://doi.org/10.1007/s10853-006-1235-9.
- Z.T. Zhang, A.J. Rondinone, J.X. Ma, J. Shen and S. Dai, Adv. Mater., 17, 1415 (2005); https://doi.org/10.1002/adma.200500009.
- N. Deraz and E. Alarifi, J. Anal. Appl. Pyrolysis, 97, 55 (2012); https://doi.org/10.1016/j.jaap.2012.04.006.
- Y.S. Vidya, K. Gurushantha, H. Nagabhushana, S.C. Sharma, K.S. Anantharaju, C. Shivakumara, D. Suresh, H.P. Nagaswarupa, S.C. Prashantha and M.R. Anilkumar, J. Alloy. Compd., 622, 86 (2015); https://doi.org/10.1016/j.jallcom.2014.10.024.
- N. M. Deraz and A. Alarifi, J. Anal. Appl. Pyrolysis, 97, 55 (2012); https://doi.org/10.1016/j.jaap.2012.04.006.
- V.A. Potakova, N.D. Zverv and V.P. Romanov, Phys. Stat. Solid. (a), 12, 623 (1972); https://doi.org/10.1002/pssa.2210120235.
- V.K. Sankaranarayanan and C. Sreekumar, Curr. Appl. Phys., 3, 205 (2003); https://doi.org/10.1016/S1567-1739(02)00202-X.
- S. Yilmaz, E. Bacaksiz, E. McGlynn, I. Polat and S. Ozcan, Thin Solid Films, 520, 5172 (2012); https://doi.org/10.1016/j.tsf.2012.04.002.
- S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee and M.H. Cho, Nanoscale, 5, 9238 (2013); https://doi.org/10.1039/c3nr02678g.
- B. Zou, W. Huang, M. Han, S. Li, X. Wu, Y. Zhang, J. Zhang, J. Zhang, P. Wu and R. Wang, J. Phys. Chem. Solids, 58,1315 (1997); https://doi.org/10.1016/S0022-3697(97)00038-3.
- Q. Han, Z. Liu, Y. Xu, Z. Chen, T. Wang and H.J. Zhang, Phys. Chem. C, 111, 5034 (2007); https://doi.org/10.1021/jp067837m.
- P.B. Devaraja, D.N. Avadhani, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa and H.B. Premkumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 121, 46 (2014); https://doi.org/10.1016/j.saa.2013.10.060.
- D.B. Judd, J. Opt. Soc. Am., 26, 421 (1936); https://doi.org/10.1364/JOSA.26.000421.
- K. Shetty, S.V. Lokesh, H.P. Nagaswarupa, H. Nagabhushana, D. Rangappa, K.S. Anantharaju, S.C. Prashantha, Y.S. Vidya and S.C. Sharma, Physica B: Conden. Matt., 507, 67 (2017); https://doi.org/10.1016/j.physb.2016.11.021.
- C.J. Zou, X.L. Yan, Y.B. Qin, M. Wang and Y. Liu, Corros. Sci., 85, 445 (2014); https://doi.org/10.1016/j.corsci.2014.04.046.
- A.A. Farag and M.A. Hegazy, Corros. Sci., 74, 168 (2013); https://doi.org/10.1016/j.corsci.2013.04.039.
- Y.S. Fu, H.Q. Chen, X.Q. Sun and X. Wang, Appl. Catal. B, 111, 280 (2012); https://doi.org/10.1016/j.apcatb.2011.10.009.
- S.C. Yan, Z.S. Li and Z.G. Zou, Langmuir, 26, 3894 (2010); https://doi.org/10.1021/la904023j.
- T.G. Xu, L.W. Zhang, H.Y. Cheng and Y.F. Zhu, Appl. Catal. B, 101, 382 (2011); https://doi.org/10.1016/j.apcatb.2010.10.007.
References
G.Y. Zhang, C.S. Li, F.Y. Cheng and J. Chen, Sens. Actuators B, 120, 403 (2007); https://doi.org/10.1016/j.snb.2006.02.034.
X.Y. Li, Y. Hou, Q.D. Zhao, W. Teng, X.J. Hu and G.H. Chen, Chemosphere, 82, 581 (2011); https://doi.org/10.1016/j.chemosphere.2010.09.068.
P. Laokul, V. Amornkitbamrung, S. Seraphin and S. Maensiri, Curr. Appl. Phys., 11, 101 (2011); https://doi.org/10.1016/j.cap.2010.06.027.
S.H. Xu, D.L. Feng and W.F. Shangguan, J. Phys. Chem. C, 113, 2463 (2009); https://doi.org/10.1021/jp806704y.
S.W. da Silva, T.F.O. Melo, M.A.G. Soler, E.C.D. Lima, A.F. da Silva and P.C. Morais, IEEE Trans. Magn., 39, 2645 (2003); https://doi.org/10.1109/TMAG.2003.815540.
J.C. Fu, J.L. Zhang, C.H. Zhao, Y. Peng, X.D. Li, Y.M. He, Z.X. Zhang, X.J. Pan, N.J. Mellors and E.Q. Xie, J. Alloy. Compd., 577, 97 (2013); https://doi.org/10.1016/j.jallcom.2013.04.177.
X.Z. Yuan, H. Wang, Y. Wu, X.H. Chen, G.M. Zeng, L.J. Leng and C. Zhang, Catal. Commun., 61, 62 (2015); https://doi.org/10.1016/j.catcom.2014.12.003.
H.G. Kim, P.H. Borse, J.S. Jang, E.D. Jeong, O.S. Jung, Y.J. Suh and J.S. Lee, Chem. Commun., 5889 (2009); https://doi.org/10.1039/b911805e.
J.G. Lee, H.M. Lee, C.S. Kim and Y.J. Oh, J. Magn. Magn. Mater., 177-181, 900 (1998); https://doi.org/10.1016/S0304-8853(97)00925-6.
K. Maaz, A. Mumtaz, S.K. Hasanain and A. Ceylan, J. Magn. Magn. Mater., 308, 289 (2007); https://doi.org/10.1016/j.jmmm.2006.06.003.
R. Sani, A. Beitollahi, Y.V. Maksimov and I.P. Suzdalev, J. Mater. Sci., 42, 2126 (2007); https://doi.org/10.1007/s10853-006-1235-9.
Z.T. Zhang, A.J. Rondinone, J.X. Ma, J. Shen and S. Dai, Adv. Mater., 17, 1415 (2005); https://doi.org/10.1002/adma.200500009.
N. Deraz and E. Alarifi, J. Anal. Appl. Pyrolysis, 97, 55 (2012); https://doi.org/10.1016/j.jaap.2012.04.006.
Y.S. Vidya, K. Gurushantha, H. Nagabhushana, S.C. Sharma, K.S. Anantharaju, C. Shivakumara, D. Suresh, H.P. Nagaswarupa, S.C. Prashantha and M.R. Anilkumar, J. Alloy. Compd., 622, 86 (2015); https://doi.org/10.1016/j.jallcom.2014.10.024.
N. M. Deraz and A. Alarifi, J. Anal. Appl. Pyrolysis, 97, 55 (2012); https://doi.org/10.1016/j.jaap.2012.04.006.
V.A. Potakova, N.D. Zverv and V.P. Romanov, Phys. Stat. Solid. (a), 12, 623 (1972); https://doi.org/10.1002/pssa.2210120235.
V.K. Sankaranarayanan and C. Sreekumar, Curr. Appl. Phys., 3, 205 (2003); https://doi.org/10.1016/S1567-1739(02)00202-X.
S. Yilmaz, E. Bacaksiz, E. McGlynn, I. Polat and S. Ozcan, Thin Solid Films, 520, 5172 (2012); https://doi.org/10.1016/j.tsf.2012.04.002.
S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee and M.H. Cho, Nanoscale, 5, 9238 (2013); https://doi.org/10.1039/c3nr02678g.
B. Zou, W. Huang, M. Han, S. Li, X. Wu, Y. Zhang, J. Zhang, J. Zhang, P. Wu and R. Wang, J. Phys. Chem. Solids, 58,1315 (1997); https://doi.org/10.1016/S0022-3697(97)00038-3.
Q. Han, Z. Liu, Y. Xu, Z. Chen, T. Wang and H.J. Zhang, Phys. Chem. C, 111, 5034 (2007); https://doi.org/10.1021/jp067837m.
P.B. Devaraja, D.N. Avadhani, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa and H.B. Premkumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 121, 46 (2014); https://doi.org/10.1016/j.saa.2013.10.060.
D.B. Judd, J. Opt. Soc. Am., 26, 421 (1936); https://doi.org/10.1364/JOSA.26.000421.
K. Shetty, S.V. Lokesh, H.P. Nagaswarupa, H. Nagabhushana, D. Rangappa, K.S. Anantharaju, S.C. Prashantha, Y.S. Vidya and S.C. Sharma, Physica B: Conden. Matt., 507, 67 (2017); https://doi.org/10.1016/j.physb.2016.11.021.
C.J. Zou, X.L. Yan, Y.B. Qin, M. Wang and Y. Liu, Corros. Sci., 85, 445 (2014); https://doi.org/10.1016/j.corsci.2014.04.046.
A.A. Farag and M.A. Hegazy, Corros. Sci., 74, 168 (2013); https://doi.org/10.1016/j.corsci.2013.04.039.
Y.S. Fu, H.Q. Chen, X.Q. Sun and X. Wang, Appl. Catal. B, 111, 280 (2012); https://doi.org/10.1016/j.apcatb.2011.10.009.
S.C. Yan, Z.S. Li and Z.G. Zou, Langmuir, 26, 3894 (2010); https://doi.org/10.1021/la904023j.
T.G. Xu, L.W. Zhang, H.Y. Cheng and Y.F. Zhu, Appl. Catal. B, 101, 382 (2011); https://doi.org/10.1016/j.apcatb.2010.10.007.