Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
H2 Plasma Treatment to Prepare Reduced TiO2 Catalyst with High Oxygen Vacancies Content
Corresponding Author(s) : S.Z. Hu
Asian Journal of Chemistry,
Vol. 26 No. 8 (2014): Vol 26 Issue 8
Abstract
A visible light responsive TiO2 with high oxygen vacancies content were prepared via H2 plasma treatment. X-ray diffraction, UV-visible spectroscopy, Raman and X-ray photoelectron spectroscopy were used to characterize the prepared TiO2 samples. The plasma treatment extended its absorption edges to the visible light region. Large amount of oxygen vacancies were created which proved by XRD and Raman. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under visible light. The photocatalytic activities of TiO2 was influenced by the oxygen vacancies content. A possible mechanism for the photocatalysis was proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Yang, Y. Dai and B. Huang, Phys. Rev. B, 76, 195201 (2007); doi:10.1103/PhysRevB.76.195201.
- N. Bahadur, K. Jain, A.K. Srivastava, Govind, R. Gakhar, D. Haranath and M.S. Dulat, Mater. Chem. Phys., 124, 600 (2010); doi:10.1016/j.matchemphys.2010.07.020.
- A. Folli, S.B. Campbell, J.A. Anderson and D.E. Macphee, J. Photochem. Photobiol. A, 220, 85 (2011); doi:10.1016/j.jphotochem.2011.03.017.
- M.C. Sansiviero, D.S. dos Santos, A.E. Job and R.F. Aroca, J. Photochem. Photobiol. A, 220, 20 (2011); doi:10.1016/j.jphotochem.2011.03.007.
- M.R. Hoffmann, S.T. Martin, W.Y. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- D.M. Chen, D. Yang, Q. Wang and Z. Jiang, Ind. Eng. Chem. Res., 45, 4110 (2006); doi:10.1021/ie0600902.
- Y. Yalcin, M. Kilic and Z. Cinar, J. Adv. Oxid. Technol., 13, 281 (2010).
- T. Sugimoto, X.P. Zhou and A. Muramatsu, J. Colloid Interf. Sci., 259, 53 (2003); doi:10.1016/S0021-9797(03)00035-3.
- S. Chu, L.L. Luo, J.C. Yang, F. Kong, S. Luo, Y. Wang and Z.G. Zou, Appl. Surf. Sci., 258, 9664 (2012); doi:10.1016/j.apsusc.2012.06.007.
- T. Arita, K. Moriya, T. Yoshimura, K. Minami, T. Naka and T. Adschiri, Ind. Eng. Chem. Res., 49, 9815 (2010); doi:10.1021/ie101074w.
- M.L. Luo, J.Q. Zhao, W. Tang and C.S. Pu, Appl. Surf. Sci., 249, 76 (2005); doi:10.1016/j.apsusc.2004.11.054.
- S. Sato, Chem. Phys. Lett., 123, 126 (1986); doi:10.1016/0009-2614(86)87026-9.
- R. Asahi, T. Morikawa, T. Ohwaki, A. Aoki and Y. Taga, Science, 293, 269 (2001); doi:10.1126/science.1061051.
- H. Irie, Y. Watanabe and K. Hashimoto, J. Phys. Chem. B, 107, 5483 (2003); doi:10.1021/jp030133h.
- T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, Appl. Catal. B, 42, 403 (2003); doi:10.1016/S0926-3373(02)00269-2.
- M.A. Henderson, W.S. Epling, C.H.F. Peden and C.L. Perkins, J. Phys. Chem. B, 107, 534 (2003); doi:10.1021/jp0262113.
- S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin and G. Pacchioni, J. Am. Chem. Soc., 128, 15666 (2006); doi:10.1021/ja064164c.
- B. Oregan and M. Gratzel, Nature, 353, 737 (1991); doi:10.1038/353737a0.
References
K. Yang, Y. Dai and B. Huang, Phys. Rev. B, 76, 195201 (2007); doi:10.1103/PhysRevB.76.195201.
N. Bahadur, K. Jain, A.K. Srivastava, Govind, R. Gakhar, D. Haranath and M.S. Dulat, Mater. Chem. Phys., 124, 600 (2010); doi:10.1016/j.matchemphys.2010.07.020.
A. Folli, S.B. Campbell, J.A. Anderson and D.E. Macphee, J. Photochem. Photobiol. A, 220, 85 (2011); doi:10.1016/j.jphotochem.2011.03.017.
M.C. Sansiviero, D.S. dos Santos, A.E. Job and R.F. Aroca, J. Photochem. Photobiol. A, 220, 20 (2011); doi:10.1016/j.jphotochem.2011.03.007.
M.R. Hoffmann, S.T. Martin, W.Y. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
D.M. Chen, D. Yang, Q. Wang and Z. Jiang, Ind. Eng. Chem. Res., 45, 4110 (2006); doi:10.1021/ie0600902.
Y. Yalcin, M. Kilic and Z. Cinar, J. Adv. Oxid. Technol., 13, 281 (2010).
T. Sugimoto, X.P. Zhou and A. Muramatsu, J. Colloid Interf. Sci., 259, 53 (2003); doi:10.1016/S0021-9797(03)00035-3.
S. Chu, L.L. Luo, J.C. Yang, F. Kong, S. Luo, Y. Wang and Z.G. Zou, Appl. Surf. Sci., 258, 9664 (2012); doi:10.1016/j.apsusc.2012.06.007.
T. Arita, K. Moriya, T. Yoshimura, K. Minami, T. Naka and T. Adschiri, Ind. Eng. Chem. Res., 49, 9815 (2010); doi:10.1021/ie101074w.
M.L. Luo, J.Q. Zhao, W. Tang and C.S. Pu, Appl. Surf. Sci., 249, 76 (2005); doi:10.1016/j.apsusc.2004.11.054.
S. Sato, Chem. Phys. Lett., 123, 126 (1986); doi:10.1016/0009-2614(86)87026-9.
R. Asahi, T. Morikawa, T. Ohwaki, A. Aoki and Y. Taga, Science, 293, 269 (2001); doi:10.1126/science.1061051.
H. Irie, Y. Watanabe and K. Hashimoto, J. Phys. Chem. B, 107, 5483 (2003); doi:10.1021/jp030133h.
T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, Appl. Catal. B, 42, 403 (2003); doi:10.1016/S0926-3373(02)00269-2.
M.A. Henderson, W.S. Epling, C.H.F. Peden and C.L. Perkins, J. Phys. Chem. B, 107, 534 (2003); doi:10.1021/jp0262113.
S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin and G. Pacchioni, J. Am. Chem. Soc., 128, 15666 (2006); doi:10.1021/ja064164c.
B. Oregan and M. Gratzel, Nature, 353, 737 (1991); doi:10.1038/353737a0.