Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Temperature Dependence Study of Chiral Ether Derivative by 1H NMR Relaxation Time
Corresponding Author(s) : Arzu Ekinci
Asian Journal of Chemistry,
Vol. 26 No. 8 (2014): Vol 26 Issue 8
Abstract
Measurement of spin-lattice relaxation time T1 has been studied for the N-benzil-2-isobutyl aza-15-crown-5 ether derivative as a function of temperature. The data suggest that the underlying mechanism of relaxation rates is due to magnetic dipole-dipole interaction which is the dominant mechanism for the increase in temperature due to increase in the dipolar relaxation mechanism and, modulated by whole molecular tumbling. From ln T1 versus 1/T graph, activation energies (Ea) and correlation times (tc) were obtained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.W. Buchanan, A. Moghimi and C.I. Ratcliffe, Can. J. Chem., 74, 1437 (1996); doi:10.1139/v96-161.
- C.J. Pedersen, J. Am. Chem. Soc., 89, 7017 (1967); doi:10.1021/ja01002a035.
- H. Richter and M.D. Zeidler, Mol. Phys., 55, 49 (1985); doi:10.1080/00268978500101151.
- W.J. Briels and F.T.H. Leuwerink, J. Chem. Phys., 106, 8140 (1997); doi:10.1063/1.473819.
- T.M. Wang, J.S. Bradshaw, J.C. Curtis, P. Huszthy and R.M. Izatt, J. Incl. Phenom., 16, 113 (1993); doi:10.1007/BF00709146.
- J. McConnell, The Theory of Nuclear Magnetic Relaxation in Liquids, Cambridge University Press, New York, (1987).
- Y. Zhang, G. Hirasaki, R. Kobayaski, Relaxation Time and Self Diffusion Measurements of Pure Ethane And Propane. 2 St Annual Progress Report of Fluid –Rock Characterization and Interactions in NMR Well Logging (2001).
- D. Fushman, R. Weisemann, H. Thuring and H. Ruterjans, J. Biomol. NMR, 4, 61 (1994); doi:10.1007/BF00178336.
- C. Kojima, A. Ono, M. Kainosho and T.L. James, J. Magn. Reson., 135, 310 (1998); doi:10.1006/jmre.1998.1584.
- A. Abragam, Principles of Nuclear Magnetism. Oxford at the Claredon Press: New York, (1985).
- L. Fielding, Tetrahedron, 56, 6151 (2000); doi:10.1016/S0040-4020(00)00492-0.
- V.I. Bakhmutov, Practical NMR Relaxation for Chemists (2004).
- C.P. Slichters, Principles of Magnetic Resonance, Springer-Verlag Berlin Heidelberg, New York (1980).
- Y. Turgut and H. Hosgören, Tetrahedron Asymm., 14, 3815 (2003); doi:10.1016/j.tetasy.2003.09.037.
- M.Z. Köylü and H. Budak, Asian J. Chem., 19, 2349 (2007).
- B.V.S. Murthy, K.P. Ramesh and J. Ramakrishna, J. Phys. Chem. Solids, 61, 961 (2000); doi:10.1016/S0022-3697(99)00396-0.
- F. Köksal and T. Çaglayan, Chem. Phys. Lett., 43, 544 (1976); doi:10.1016/0009-2614(76)80619-7.
- T.T. Ang and B.A. Dunell, Can. J. Chem., 52, 1840 (1974); doi:10.1139/v74-263.
- A. Yilmaz, M.Z. Köylü and H. Budak, Chem. Phys. Lett., 427, 346 (2006); doi:10.1016/j.cplett.2006.05.091.
- K. Maskos, Acta Biochim. Pol., 28, 317 (1981).
- J.K.M. Sanders, B.K. Hunter and N.M.R. Modern, Spectroscopy: A Guide for Chemists, Paperback, Oxford University Press, March (1993).
References
G.W. Buchanan, A. Moghimi and C.I. Ratcliffe, Can. J. Chem., 74, 1437 (1996); doi:10.1139/v96-161.
C.J. Pedersen, J. Am. Chem. Soc., 89, 7017 (1967); doi:10.1021/ja01002a035.
H. Richter and M.D. Zeidler, Mol. Phys., 55, 49 (1985); doi:10.1080/00268978500101151.
W.J. Briels and F.T.H. Leuwerink, J. Chem. Phys., 106, 8140 (1997); doi:10.1063/1.473819.
T.M. Wang, J.S. Bradshaw, J.C. Curtis, P. Huszthy and R.M. Izatt, J. Incl. Phenom., 16, 113 (1993); doi:10.1007/BF00709146.
J. McConnell, The Theory of Nuclear Magnetic Relaxation in Liquids, Cambridge University Press, New York, (1987).
Y. Zhang, G. Hirasaki, R. Kobayaski, Relaxation Time and Self Diffusion Measurements of Pure Ethane And Propane. 2 St Annual Progress Report of Fluid –Rock Characterization and Interactions in NMR Well Logging (2001).
D. Fushman, R. Weisemann, H. Thuring and H. Ruterjans, J. Biomol. NMR, 4, 61 (1994); doi:10.1007/BF00178336.
C. Kojima, A. Ono, M. Kainosho and T.L. James, J. Magn. Reson., 135, 310 (1998); doi:10.1006/jmre.1998.1584.
A. Abragam, Principles of Nuclear Magnetism. Oxford at the Claredon Press: New York, (1985).
L. Fielding, Tetrahedron, 56, 6151 (2000); doi:10.1016/S0040-4020(00)00492-0.
V.I. Bakhmutov, Practical NMR Relaxation for Chemists (2004).
C.P. Slichters, Principles of Magnetic Resonance, Springer-Verlag Berlin Heidelberg, New York (1980).
Y. Turgut and H. Hosgören, Tetrahedron Asymm., 14, 3815 (2003); doi:10.1016/j.tetasy.2003.09.037.
M.Z. Köylü and H. Budak, Asian J. Chem., 19, 2349 (2007).
B.V.S. Murthy, K.P. Ramesh and J. Ramakrishna, J. Phys. Chem. Solids, 61, 961 (2000); doi:10.1016/S0022-3697(99)00396-0.
F. Köksal and T. Çaglayan, Chem. Phys. Lett., 43, 544 (1976); doi:10.1016/0009-2614(76)80619-7.
T.T. Ang and B.A. Dunell, Can. J. Chem., 52, 1840 (1974); doi:10.1139/v74-263.
A. Yilmaz, M.Z. Köylü and H. Budak, Chem. Phys. Lett., 427, 346 (2006); doi:10.1016/j.cplett.2006.05.091.
K. Maskos, Acta Biochim. Pol., 28, 317 (1981).
J.K.M. Sanders, B.K. Hunter and N.M.R. Modern, Spectroscopy: A Guide for Chemists, Paperback, Oxford University Press, March (1993).