Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Electrochemical Properties of Hexagonal Sliced LiNi0.5Mn0.5O2 as Cathode Materials for Li-ion Batteries
Corresponding Author(s) : Shumei Dou
Asian Journal of Chemistry,
Vol. 26 No. 9 (2014): Vol 26 Issue 9
Abstract
Single-phase lithium nickel manganese oxide, LiNi0.5Mn0.5O2, was successfully synthesized from nickel manganese oxide precursor that prepared by co-precipitation step by step. SEM images show the final product LiNi0.5Mn0.5O2 has a uniform morphology composed of hexagonal cubes with the diameter about 300 nm composed of hexagonal slices and smooth crystal surface. The measured cation ratios of Ni: Mn in different sites is nearly 1:1 according to the results of EDAX. X-ray diffraction pattern shows that the product is well crystallized with a high value of I003/I104 and no diffraction peaks of LiMn2O3 can be detected. Electrochemical performance of as-prepared LiNi0.5Mn0.5O2 was examined in the test battery by charge-discharge cycling with different rate. The cycling behavior between 2.5 and 4.4 V at a current rate of 20 mA g-1 shows a reversible capacity of about 209 mAh g-1 with little capacity fading after 30 cycles. High-rate capability test shows that even at a rate of 320 mA g-1, stable capacity about 108 mAh g-1 is still retained. The favorable electrochemical performance was primarily attributed to regular and stable crustal structure with the uniform morphology.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.-M. Tarascon, Philos. Trans. R. Soc. London, Ser. A, 368, 3227 (2010); doi:10.1098/rsta.2010.0112.
- A. Manthiram, J. Phys. Chem. Lett., 2, 176 (2011); doi:10.1021/jz1015422.
- T. Ohzuku and Y. Makimura, Chem. Lett., 744 (2001); doi:10.1246/cl.2001.744.
- Z.H. Lu, D.D. Macneil and J.R. Dahn, Electrochem. Solid-State Lett., 4, A191 (2001); doi:10.1149/1.1407994.
- Y. Makimura and T. Ohzuku, J. Power Sources, 119–121, 156 (2003); doi:10.1016/S0378-7753(03)00170-8.
- K. Kang, Y.S. Meng, J. Breger, C.P. Grey and G. Ceder, Science, 311, 977 (2006); doi:10.1126/science.1122152.
- H. Xia, S.B. Tang and L. Lu, J. Alloys Comp., 449, 296 (2008); doi:10.1016/j.jallcom.2006.02.097.
- X.L. Meng, S.M. Dou and W.L. Wang, J. Power Sources, 184, 489 (2008); doi:10.1016/j.jpowsour.2008.04.015.
- S.J. Shi, J.P. Tu, Y.Y. Tang, Y.Q. Zhang, X.L. Wang and C.D. Gu, J. Power Sources, 240, 140 (2013); doi:10.1016/j.jpowsour.2013.04.006.
- Y. Hinuma, Y.S. Meng, K. Kang and G. Ceder, Chem. Mater., 19, 1790 (2007); doi:10.1021/cm062903i.
- Z. Lu, L.Y. Beaulieu, R.A. Donaberger, C.L. Thomas and J.R. Dahn, J. Electrochem. Soc., 149, A778 (2002); doi:10.1149/1.1471541.
- H.-J. Noh, S. Youn, C.S. Yoon and Y.-K. Sun, J. Power Sources, 233, 121 (2013); doi:10.1016/j.jpowsour.2013.01.063.
- J. Cho, Y. Kim and M.G. Kim, J. Phys. Chem. C, 111, 3192 (2007); doi:10.1021/jp067116n.
- B. Zhang, G. Chen, P. Xu and Z. Lv, Solid State Ion., 178, 1230 (2007); doi:10.1016/j.ssi.2007.06.010.
- E.-S. Lee, A. Huq and A. Manthiram, J. Power Sources, 240, 193 (2013); doi:10.1016/j.jpowsour.2013.04.010.
- Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak and K. Amine, Nat. Mater., 8, 320 (2009); doi:10.1038/nmat2418.
- X. Yang, X. Wang, G. Zou, L. Hu, H. Shu, S. Yang, L. Liu, H. Hu, H. Yuan, B. Hu, Q. Wei and L. Yi, J. Power Sources, 232, 338 (2013); doi:10.1016/j.jpowsour.2013.01.021.
- H. Xia, S.B. Tang and L. Lu, J. Alloys Comp., 449, 296 (2008); doi:10.1016/j.jallcom.2006.02.097.
References
J.-M. Tarascon, Philos. Trans. R. Soc. London, Ser. A, 368, 3227 (2010); doi:10.1098/rsta.2010.0112.
A. Manthiram, J. Phys. Chem. Lett., 2, 176 (2011); doi:10.1021/jz1015422.
T. Ohzuku and Y. Makimura, Chem. Lett., 744 (2001); doi:10.1246/cl.2001.744.
Z.H. Lu, D.D. Macneil and J.R. Dahn, Electrochem. Solid-State Lett., 4, A191 (2001); doi:10.1149/1.1407994.
Y. Makimura and T. Ohzuku, J. Power Sources, 119–121, 156 (2003); doi:10.1016/S0378-7753(03)00170-8.
K. Kang, Y.S. Meng, J. Breger, C.P. Grey and G. Ceder, Science, 311, 977 (2006); doi:10.1126/science.1122152.
H. Xia, S.B. Tang and L. Lu, J. Alloys Comp., 449, 296 (2008); doi:10.1016/j.jallcom.2006.02.097.
X.L. Meng, S.M. Dou and W.L. Wang, J. Power Sources, 184, 489 (2008); doi:10.1016/j.jpowsour.2008.04.015.
S.J. Shi, J.P. Tu, Y.Y. Tang, Y.Q. Zhang, X.L. Wang and C.D. Gu, J. Power Sources, 240, 140 (2013); doi:10.1016/j.jpowsour.2013.04.006.
Y. Hinuma, Y.S. Meng, K. Kang and G. Ceder, Chem. Mater., 19, 1790 (2007); doi:10.1021/cm062903i.
Z. Lu, L.Y. Beaulieu, R.A. Donaberger, C.L. Thomas and J.R. Dahn, J. Electrochem. Soc., 149, A778 (2002); doi:10.1149/1.1471541.
H.-J. Noh, S. Youn, C.S. Yoon and Y.-K. Sun, J. Power Sources, 233, 121 (2013); doi:10.1016/j.jpowsour.2013.01.063.
J. Cho, Y. Kim and M.G. Kim, J. Phys. Chem. C, 111, 3192 (2007); doi:10.1021/jp067116n.
B. Zhang, G. Chen, P. Xu and Z. Lv, Solid State Ion., 178, 1230 (2007); doi:10.1016/j.ssi.2007.06.010.
E.-S. Lee, A. Huq and A. Manthiram, J. Power Sources, 240, 193 (2013); doi:10.1016/j.jpowsour.2013.04.010.
Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak and K. Amine, Nat. Mater., 8, 320 (2009); doi:10.1038/nmat2418.
X. Yang, X. Wang, G. Zou, L. Hu, H. Shu, S. Yang, L. Liu, H. Hu, H. Yuan, B. Hu, Q. Wei and L. Yi, J. Power Sources, 232, 338 (2013); doi:10.1016/j.jpowsour.2013.01.021.
H. Xia, S.B. Tang and L. Lu, J. Alloys Comp., 449, 296 (2008); doi:10.1016/j.jallcom.2006.02.097.