Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Studies on the Interaction Mechanism of Morin-Co(II) with DNA and Preparation of Electrochemical DNA Biosensor
Corresponding Author(s) : Shu-Yan Niu
Asian Journal of Chemistry,
Vol. 26 No. 9 (2014): Vol 26 Issue 9
Abstract
Fabrication and electrochemical characterization of a sensitive and novel DNA electrochemical biosensor for the detection of the specific target DNA fragment with a new prepared indicator was presented. The sensor was based on multi-walled carbon nanotubes functionalized with a carboxylic acid group (MWNTs-COOH) as the signal hybridization detection enhancement element. The well dispersed MWNTs were dripped onto the glassy carbon electrode (GCE) surface firstly to prepare MWNTs/GCE. Oligonucleotides with the 5´-amino group were covalently bonded to the carboxyl group of carbon nanotubes. Cyclic voltammetry was used to characterized the modified electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) analysis using a novel electroactive intercalator Morin-Co(II) as an indicator. The specific coliform DNA fragment was detected by the proposed biosensor with a good linear range and a lower detection limit. The linear range is from 2 × 10-9 M to 5 × 10-10 M with a detection limit of 8.1 × 10-11 M (3s, n = 7). Moreover, the sensor presentes excellent stability and a high repeatability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wang, Anal. Chim. Acta, 469, 63 (2002); doi:10.1016/S0003-2670(01)01399-X.
- B. Kuswandi, S. Tombelli, G. Marazza and M. Mascini, Chimia, 59, 236 (2005); doi:10.2533/000942905777676597.
- F. Davis, M.A. Hughes, A.R. Cossins and S.P.J. Higson, Anal. Chem., 79, 1153 (2007); doi:10.1021/ac061070c.
- E.L.S. Wong and J.J. Gooding, Anal. Chem., 78, 2138 (2006); doi:10.1021/ac0509096.
- A. Sassolas, B.D. Leca-bouvier and L.J. Blum, Chem. Rev., 108, 109 (2008); doi:10.1021/cr0684467.
- G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria and C. Parrado, Talanta, 74, 291 (2007); doi:10.1016/j.talanta.2007.10.013.
- A. Erdem, P. Papakonstantinou and H. Murphy, Anal. Chem., 78, 6656 (2006); doi:10.1021/ac060202z.
- J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, S. Peng and K.J. Cho, Science, 287, 622 (2000); doi:10.1126/science.287.5453.622.
- P.G. Collins, K. Bradley, M. Ishigami and A. Zettl, Science, 287, 1801 (2000); doi:10.1126/science.287.5459.1801.
- J.P. Kim, B.Y. Lee, S. Hong and S.J. Sim, Anal. Biochem., 381, 193 (2008); doi:10.1016/j.ab.2008.06.040.
- X.H. Kang, Z.B. Mai, X.Y. Zou, P.X. Cai and J.Y. Mo, Anal. Biochem., 363, 143 (2007); doi:10.1016/j.ab.2007.01.003.
- T. Ito, L. Sun, R.R. Henriquez and R.M. Crooks, Acc. Chem. Res., 37, 937 (2004); doi:10.1021/ar040108+.
- C.R. Martin, G. Che, B.B. Lakshmi and E.R. Fisher, Nature, 393, 346 (1998); doi:10.1038/30694.
- C. Dekker, S.J. Tans and A.R.M. Verschueren, Nature, 393, 49 (1998); doi:10.1038/29954.
- J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier and P.M. Ajayan, J. Am. Chem. Soc., 116, 7935 (1994); doi:10.1021/ja00096a076.
- P. Poncharal, Z.L. Wang, D. Ugarte and W.A. De Heer, Science, 283, 1513 (1999); doi:10.1126/science.283.5407.1513.
- S.V. Wegner, A. Okesli, P. Chen and C. He, J. Am. Chem. Soc., 129, 3474 (2007); doi:10.1021/ja068342d.
- M.R. Gore, V.A. Szalai, P.A. Ropp, I.V. Yang, J.S. Silverman and H.H. Thorp, Anal. Chem., 75, 6586 (2003); doi:10.1021/ac034918v.
- Z.W. Zhu, C. Li and N.Q. Li, Microchem. J., 71, 57 (2002); doi:10.1016/S0026-265X(01)00118-7.
- K. Jiao, Q.J. Li, W. Sun and Z.J. Wang, Electroanalysis, 17, 997 (2005); doi:10.1002/elan.200403208.
- V. Sivaramakrishnan, P.N.M. Shilpa, V.R.P. Kumar and S.N. Devaraj, Chem.-Biol. Interact., 171, 79 (2008); doi:10.1016/j.cbi.2007.09.003.
- T.W. Wu, K.P. Fung, J. Wu, C.C. Yang, J. Lo and R.D. Weisel, Life Sci., 58, 17 (1995); doi:10.1016/0024-3205(95)02270-8.
- S.H. Fang, Y.C. Hou, W.C. Chang, S.L. Hsiu, P.D. Lee Chao and B.L. Chiang, Life Sci., 74, 743 (2003); doi:10.1016/j.lfs.2003.07.017.
- F. Wang, Y. Xu, J. Zhao and S. Hu, Bioelectrochem., 70, 356 (2007); doi:10.1016/j.bioelechem.2006.05.003.
- J.W. Kang, Zh.F. Li and X.Q. Lu, J. Pharm. Biomed. Anal., 40, 1166 (2006); doi:10.1016/j.jpba.2005.08.030.
- Q. Zhang, L.F. Wang, X. Liu, S.B. Li and F.Y. He, Transition Met. Chem., 21, 23 (1996); doi:10.1007/BF00166007.
- M.T. Carter, M. Rodriguez and A.J. Bard, J. Am. Chem. Soc., 111, 8901 (1989); doi:10.1021/ja00206a020.
References
J. Wang, Anal. Chim. Acta, 469, 63 (2002); doi:10.1016/S0003-2670(01)01399-X.
B. Kuswandi, S. Tombelli, G. Marazza and M. Mascini, Chimia, 59, 236 (2005); doi:10.2533/000942905777676597.
F. Davis, M.A. Hughes, A.R. Cossins and S.P.J. Higson, Anal. Chem., 79, 1153 (2007); doi:10.1021/ac061070c.
E.L.S. Wong and J.J. Gooding, Anal. Chem., 78, 2138 (2006); doi:10.1021/ac0509096.
A. Sassolas, B.D. Leca-bouvier and L.J. Blum, Chem. Rev., 108, 109 (2008); doi:10.1021/cr0684467.
G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria and C. Parrado, Talanta, 74, 291 (2007); doi:10.1016/j.talanta.2007.10.013.
A. Erdem, P. Papakonstantinou and H. Murphy, Anal. Chem., 78, 6656 (2006); doi:10.1021/ac060202z.
J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, S. Peng and K.J. Cho, Science, 287, 622 (2000); doi:10.1126/science.287.5453.622.
P.G. Collins, K. Bradley, M. Ishigami and A. Zettl, Science, 287, 1801 (2000); doi:10.1126/science.287.5459.1801.
J.P. Kim, B.Y. Lee, S. Hong and S.J. Sim, Anal. Biochem., 381, 193 (2008); doi:10.1016/j.ab.2008.06.040.
X.H. Kang, Z.B. Mai, X.Y. Zou, P.X. Cai and J.Y. Mo, Anal. Biochem., 363, 143 (2007); doi:10.1016/j.ab.2007.01.003.
T. Ito, L. Sun, R.R. Henriquez and R.M. Crooks, Acc. Chem. Res., 37, 937 (2004); doi:10.1021/ar040108+.
C.R. Martin, G. Che, B.B. Lakshmi and E.R. Fisher, Nature, 393, 346 (1998); doi:10.1038/30694.
C. Dekker, S.J. Tans and A.R.M. Verschueren, Nature, 393, 49 (1998); doi:10.1038/29954.
J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier and P.M. Ajayan, J. Am. Chem. Soc., 116, 7935 (1994); doi:10.1021/ja00096a076.
P. Poncharal, Z.L. Wang, D. Ugarte and W.A. De Heer, Science, 283, 1513 (1999); doi:10.1126/science.283.5407.1513.
S.V. Wegner, A. Okesli, P. Chen and C. He, J. Am. Chem. Soc., 129, 3474 (2007); doi:10.1021/ja068342d.
M.R. Gore, V.A. Szalai, P.A. Ropp, I.V. Yang, J.S. Silverman and H.H. Thorp, Anal. Chem., 75, 6586 (2003); doi:10.1021/ac034918v.
Z.W. Zhu, C. Li and N.Q. Li, Microchem. J., 71, 57 (2002); doi:10.1016/S0026-265X(01)00118-7.
K. Jiao, Q.J. Li, W. Sun and Z.J. Wang, Electroanalysis, 17, 997 (2005); doi:10.1002/elan.200403208.
V. Sivaramakrishnan, P.N.M. Shilpa, V.R.P. Kumar and S.N. Devaraj, Chem.-Biol. Interact., 171, 79 (2008); doi:10.1016/j.cbi.2007.09.003.
T.W. Wu, K.P. Fung, J. Wu, C.C. Yang, J. Lo and R.D. Weisel, Life Sci., 58, 17 (1995); doi:10.1016/0024-3205(95)02270-8.
S.H. Fang, Y.C. Hou, W.C. Chang, S.L. Hsiu, P.D. Lee Chao and B.L. Chiang, Life Sci., 74, 743 (2003); doi:10.1016/j.lfs.2003.07.017.
F. Wang, Y. Xu, J. Zhao and S. Hu, Bioelectrochem., 70, 356 (2007); doi:10.1016/j.bioelechem.2006.05.003.
J.W. Kang, Zh.F. Li and X.Q. Lu, J. Pharm. Biomed. Anal., 40, 1166 (2006); doi:10.1016/j.jpba.2005.08.030.
Q. Zhang, L.F. Wang, X. Liu, S.B. Li and F.Y. He, Transition Met. Chem., 21, 23 (1996); doi:10.1007/BF00166007.
M.T. Carter, M. Rodriguez and A.J. Bard, J. Am. Chem. Soc., 111, 8901 (1989); doi:10.1021/ja00206a020.