Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal of Water from Anisole by 3A Molecular Sieve in Batch and Fixed-bed Column Systems
Corresponding Author(s) : Na Sun
Asian Journal of Chemistry,
Vol. 26 No. 10 (2014): Vol 26 Issue 10
Abstract
3A molecular sieve, conducted by three thermodynamic and two kinetic adsorption experiments for testing its adsorption ability, was the adsorbent for the removal of trace of H2O from anisole solution in both batch and fixed-bed column operations. The effects of flow rate, initial H2O concentration and bed height on the adsorption characteristics of 3A molecular sieve in the fixed-bed column system were investigated. Data analysis confirmed that the breakthrough curves were dependent on the three factors. Three kinetic models, namely Thomas, Yoon-Nelson and Adams-Bohart, were applied to experimental data to predict breakthrough curves and to determine the column characteristic parameters that were useful for process design. The data were in good agreement with the Thomas and Yoon-Nelson models. It was concluded that 3A molecular sieve could be used to remove trace H2O in anisole solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- The Merck Index, 13th ed., p. 3740.
- P. Kamala and A. Pandurangan, Catal. Commun., 9, 2231 (2008); doi:10.1016/j.catcom.2008.05.003.
- V.A. Ivanov and S.G. Katalnikov, Sep. Sci. Technol., 36, 1737 (2001); doi:10.1081/SS-100104760.
- J.-J. Liu, J. Xu, H.-L. Jia and W.-J. Zhang, School Chem. Eng. Technol., 39, 42 (2011).
- L.-D. Wang and Z.-R. Yin, Liquor-making Sci. Technol., 109, 24 (2002).
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); doi:10.1021/ja02242a004.
- F. Xian-Cai and C. Qui-Hui, Physical Chemistry, Higher Press, China, pp. 303-321 (1988).
- K.R. Hall, L.C. Eagleton, A. Acrivos and T. Vermeulen, I&EC Fundam., 5, 212 (1966); doi:10.1021/i160018a011.
- B.H. Hameed, J.M. Salman and A.L. Ahmad, J. Hazard. Mater., 163, 121 (2009); doi:10.1016/j.jhazmat.2008.06.069.
- H.M.F. Freundlich, Z. Phys. Chem., 57A, 385 (1906).
- I.A.W. Tan, A.L. Ahmad and B.H. Hameed, Desalination, 225, 13 (2008); doi:10.1016/j.desal.2007.07.005.
- R.E. Treybal, Mass Transfer Operations, McGraw Hill, New York, edn. 2 (1968).
- Y.S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998); doi:10.1016/S0923-0467(98)00076-1.
- X.-S. Wang and Y. Qin, Process Biochem., 40, 677 (2005); doi:10.1016/j.procbio.2004.01.043.
- R.D. Johnson and F.H. Arnold, Biochim. Biophys. Acta, 1247, 293 (1995); doi:10.1016/0167-4838(95)00006-G.
- M. Hosseini, S.F.L. Mertens, M. Ghorbani and M.R. Arshadi, Mater. Chem. Phys., 78, 800 (2003); doi:10.1016/S0254-0584(02)00390-5.
- Y.-S. Ho, J. Hazard. Mater., 136, 681 (2006); doi:10.1016/j.jhazmat.2005.12.043.
- Y.S. Ho and G. McKay, Water Res., 34, 735 (2000); doi:10.1016/S0043-1354(99)00232-8.
- J. Song, W. Zou, Y. Bian, F. Su and R. Han, Desalination, 265, 119 (2011); doi:10.1016/j.desal.2010.07.041.
- S.V. Gokhale, K.K. Jyoti and S.S. Lele, J. Hazard. Mater., 170, 735 (2009); doi:10.1016/j.jhazmat.2009.05.005.
- V.C. Taty-Costodes, H. Fauduet, C. Porte and Y.S. Ho, J. Hazard. Mater., 123, 135 (2005); doi:10.1016/j.jhazmat.2005.03.032.
- R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng and M. Tang, Desalination, 245, 284 (2009); doi:10.1016/j.desal.2008.07.013.
- J. Song, W. Zou, Y. Bian, F. Su and R. Han, Desalination, 265, 119 (2011); doi:10.1016/j.desal.2010.07.041.
- T.E. Köse and N. Öztürk, J. Hazard. Mater., 152, 744 (2008); doi:10.1016/j.jhazmat.2007.07.041.
- H.C. Thomas, J. Am. Chem. Soc., 66, 1664 (1944); doi:10.1021/ja01238a017.
- A.A. Ahmad and B.H. Hameed, J. Hazard. Mater., 175, 298 (2010); doi:10.1016/j.jhazmat.2009.10.003.
- T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran and M. Velan, J. Hazard. Mater., 125, 121 (2005); doi:10.1016/j.jhazmat.2005.05.014.
- Z.Z. Chowdhury, S.M. Zain, A.K. Rashid, R.F. Rafique and K. Khalid, J. Chem., Article ID 959761 (2013); doi:10.1155/2013/959761.
- Y.H. Yoon and J.H. Nelson, Am. Ind. Hyg. Assoc. J., 161, 1427 (2009).
- J.T. Nwabanne and P.K. Igbokwe, Int. J. Environ. Res., 6, 945 (2012).
- G.S. Bohart and E.Q. Adams, J. Chem. Soc., 42, 523 (1920); doi:10.1021/ja01448a018.
References
The Merck Index, 13th ed., p. 3740.
P. Kamala and A. Pandurangan, Catal. Commun., 9, 2231 (2008); doi:10.1016/j.catcom.2008.05.003.
V.A. Ivanov and S.G. Katalnikov, Sep. Sci. Technol., 36, 1737 (2001); doi:10.1081/SS-100104760.
J.-J. Liu, J. Xu, H.-L. Jia and W.-J. Zhang, School Chem. Eng. Technol., 39, 42 (2011).
L.-D. Wang and Z.-R. Yin, Liquor-making Sci. Technol., 109, 24 (2002).
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); doi:10.1021/ja02242a004.
F. Xian-Cai and C. Qui-Hui, Physical Chemistry, Higher Press, China, pp. 303-321 (1988).
K.R. Hall, L.C. Eagleton, A. Acrivos and T. Vermeulen, I&EC Fundam., 5, 212 (1966); doi:10.1021/i160018a011.
B.H. Hameed, J.M. Salman and A.L. Ahmad, J. Hazard. Mater., 163, 121 (2009); doi:10.1016/j.jhazmat.2008.06.069.
H.M.F. Freundlich, Z. Phys. Chem., 57A, 385 (1906).
I.A.W. Tan, A.L. Ahmad and B.H. Hameed, Desalination, 225, 13 (2008); doi:10.1016/j.desal.2007.07.005.
R.E. Treybal, Mass Transfer Operations, McGraw Hill, New York, edn. 2 (1968).
Y.S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998); doi:10.1016/S0923-0467(98)00076-1.
X.-S. Wang and Y. Qin, Process Biochem., 40, 677 (2005); doi:10.1016/j.procbio.2004.01.043.
R.D. Johnson and F.H. Arnold, Biochim. Biophys. Acta, 1247, 293 (1995); doi:10.1016/0167-4838(95)00006-G.
M. Hosseini, S.F.L. Mertens, M. Ghorbani and M.R. Arshadi, Mater. Chem. Phys., 78, 800 (2003); doi:10.1016/S0254-0584(02)00390-5.
Y.-S. Ho, J. Hazard. Mater., 136, 681 (2006); doi:10.1016/j.jhazmat.2005.12.043.
Y.S. Ho and G. McKay, Water Res., 34, 735 (2000); doi:10.1016/S0043-1354(99)00232-8.
J. Song, W. Zou, Y. Bian, F. Su and R. Han, Desalination, 265, 119 (2011); doi:10.1016/j.desal.2010.07.041.
S.V. Gokhale, K.K. Jyoti and S.S. Lele, J. Hazard. Mater., 170, 735 (2009); doi:10.1016/j.jhazmat.2009.05.005.
V.C. Taty-Costodes, H. Fauduet, C. Porte and Y.S. Ho, J. Hazard. Mater., 123, 135 (2005); doi:10.1016/j.jhazmat.2005.03.032.
R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng and M. Tang, Desalination, 245, 284 (2009); doi:10.1016/j.desal.2008.07.013.
J. Song, W. Zou, Y. Bian, F. Su and R. Han, Desalination, 265, 119 (2011); doi:10.1016/j.desal.2010.07.041.
T.E. Köse and N. Öztürk, J. Hazard. Mater., 152, 744 (2008); doi:10.1016/j.jhazmat.2007.07.041.
H.C. Thomas, J. Am. Chem. Soc., 66, 1664 (1944); doi:10.1021/ja01238a017.
A.A. Ahmad and B.H. Hameed, J. Hazard. Mater., 175, 298 (2010); doi:10.1016/j.jhazmat.2009.10.003.
T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran and M. Velan, J. Hazard. Mater., 125, 121 (2005); doi:10.1016/j.jhazmat.2005.05.014.
Z.Z. Chowdhury, S.M. Zain, A.K. Rashid, R.F. Rafique and K. Khalid, J. Chem., Article ID 959761 (2013); doi:10.1155/2013/959761.
Y.H. Yoon and J.H. Nelson, Am. Ind. Hyg. Assoc. J., 161, 1427 (2009).
J.T. Nwabanne and P.K. Igbokwe, Int. J. Environ. Res., 6, 945 (2012).
G.S. Bohart and E.Q. Adams, J. Chem. Soc., 42, 523 (1920); doi:10.1021/ja01448a018.