Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Viscometric and Conductometric Studies of Doxycycline Hyclate in Water, Aqueous Glycine and L-Alanine Solutions at Different Temperatures
Corresponding Author(s) : Shashi Kant Sharma
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
To investigate the behaviour of doxycycline hyclate in water, aqueous glycine and aqueous L-alanine solutions, the viscometric and conductometric studies have been conducted at different temperatures. Viscosity data has been used to derive the Jones-Dole viscosity B-coefficient, temperature derivative of B-coefficient (dB/dT), viscosity B-coefficient of transfer (ΔtrB), free energy of activation of viscous flow per mole of solvent (Δμ1o*) and solute (Δμ2o*) respectively, activation entropy (ΔS2o*) and activation enthalpy (ΔH2o*). Conductance data has been used to compute Walden product (Λmoηo) and temperature coefficient of Walden product (dΛmoηo/dT) for doxycycline hyclate in water, and in aqueous glycine and aqueous L-alanine solution. The positive values of B-coefficient, ΔtrB indicate the prevailing of hydrophilic-ionic interactions in the systems under examination. The negative values of dB/dT and positive values of temperature coefficient of Walden product infer structure maker tendency of doxycycline hyclate in water, and in aqueous glycine and aqueous L-alanine solution. Transfer energy parameters indicate the breaking of intermolecular bonds in transition state which means that formation of activated complex is unfavourable.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.A. Petsko and J.R. Yates III, Curr. Protoc. Bioinform., 36, 8.1.1 (2011); https://doi.org/10.1002/0471250953.bi0801s36.
- T.C. Ramalho and E.F.F. Da Cunha, J. Biomol. Struct. Dyn., 28, 645 (2011); https://doi.org/10.1080/073911011010524975.
- A. Ali, R. Patel and S. Khan and V. Bhushan, Z. Naturforsch., 64, 758 (2009); https://doi.org/10.1515/zna-2009-1113.
- A. Ali, S. Sabir, A.K. Nain, S. Hyder, S. Ahmad, M. Tariq and R. Patel, J. Chin. Chem. Soc., 54, 659 (2007); https://doi.org/10.1002/jccs.200700094.
- K. Zhuo, Q. Liu, Y. Wang, Q. Ren and J. Wang, J. Chem. Eng. Data, 51, 919 (2006); https://doi.org/10.1021/je050412t.
- U.B. Kadam, A.P. Hiray, A.B. Sawant and M. Hasan, J. Chem. Eng. Data, 51, 60 (2006); https://doi.org/10.1021/je050169y.
- S.A. Shaikh, S.R. Ahmed and B. Jayaram, Arch. Biochem. Biophys., 429, 81 (2004); https://doi.org/10.1016/j.abb.2004.05.019.
- S. Chakravarty, V.S. Yadava, V. Kumar and K.K. Kannan, J. Biosci.,, 8, 491 (1985); https://doi.org/10.1007/BF02704000.
- T.S. Banipal, J. Kaur, P.K. Banipal and K. Singh, J. Chem. Eng. Data, 53, 1803 (2008); https://doi.org/10.1021/je8001464.
- A. Pal and S. Kumar, J. Chem. Thermodyn., 37, 1085 (2005); https://doi.org/10.1016/j.jct.2004.12.015.
- A.K. Nain and D. Chand, J. Chem. Thermodyn., 41, 243 (2009); https://doi.org/10.1016/j.jct.2008.09.008.
- D.P. Kharakoz, J. Phys. Chem., 95, 5634 (1991); https://doi.org/10.1021/j100167a049.
- G.R. Hedwig and H. Hoiland, J. Chem. Thermodyn., 25, 349 (1993); https://doi.org/10.1006/jcht.1993.1035.
- M. Sahayam and G.R. Hedwig, J. Chem. Thermodyn., 26, 361 (1994); https://doi.org/10.1006/jcht.1994.1045.
- R. Bhat and J.C. Ahluwalia, J. Phys. Chem., 89, 1099 (1985); https://doi.org/10.1021/j100253a011.
- T.V. Chalikian, A.P. Sarvazyan and K.J. Breslauer, J. Phys. Chem., 97, 13017 (1993); https://doi.org/10.1021/j100151a061.
- T.V. Chalikian, A.P. Sarvazyan and K.J. Breslauer, J. Biophys. Chem., 51, 89 (1994); https://doi.org/10.1016/0301-4622(94)85007-0.
- B. Sinha, B.K. Sarkar and M.N. Roy, J. Chem. Thermodyn., 40, 394 (2008); https://doi.org/10.1016/j.jct.2007.09.012.
- M.J. Iqbal and M. Siddiquah, J. Braz. Chem. Soc., 17, 851 (2006); https://doi.org/10.1590/S0103-50532006000500006.
- B. Hess and N.F.A. van der Vegt, J. Phys. Chem. B, 110, 17616 (2006); https://doi.org/10.1021/jp0641029.
- M.S. Bakshi, J. Phys. Chem. C, 115, 13947 (2011); https://doi.org/10.1021/jp202454k.
- H. Kumar and K. Kaur, Thermochim. Acta, 551, 40 (2013); https://doi.org/10.1016/j.tca.2012.10.018.
- H. Kumar and K. Kaur, J. Mol. Liq., 173, 130 (2012); https://doi.org/10.1016/j.molliq.2012.07.008.
- S. Chauhan, K. Singh, K. Kumar, S.C. Neelakantan and G. Kumar, J. Chem. Eng. Data, 61, 788 (2016); https://doi.org/10.1021/acs.jced.5b00549.
- S. Kant, A. Kumar and S. Kumar, J. Mol. Liq., 150, 39 (2009); https://doi.org/10.1016/j.molliq.2009.09.010.
- B. Sinha, V.K. Dakua and M.N. Roy, J. Chem. Eng. Data, 52, 1768 (2007); https://doi.org/10.1021/je7001418.
- N.G. Tsierkezos and I.E. Molinou, J. Chem. Eng. Data, 43, 989 (1998); https://doi.org/10.1021/je9800914.
- S. Chauhan, P. Chaudhary, K. Sharma, K. Kumar and Kiran, Chem. Pap., 67, 1442 (2013); https://doi.org/10.2478/s11696-013-0404-y.
- K. Sharma and S. Chauhan, Thermochim. Acta, 578, 15 (2014); https://doi.org/10.1016/j.tca.2013.12.021.
- S.S. Dhondge, S.P. Zodape and D.V. Parwate, J. Chem. Thermodyn., 48, 207 (2012); https://doi.org/10.1016/j.jct.2011.12.022.
- K. Kaur and H. Kumar, J. Mol. Liq., 177, 49 (2013); https://doi.org/10.1016/j.molliq.2012.09.016.
- G. Jones and M.J. Dole, J. Am. Chem. Soc., 51, 2950 (1929); https://doi.org/10.1021/ja01385a012.
- S. Chauhan, K. Kumar, M.S. Chauhan, D.S. Rana and A. Umar, Adv. Sci. Eng. Med., 5, 991 (2013); https://doi.org/10.1166/asem.2013.1362.
- D. Feakins, D.J. Freemantle and K.G. Lawrence, J. Chem. Soc., Faraday Trans., 70, 795 (1974); https://doi.org/10.1039/f19747000795.
- K. Kumar, B.S. Patial and S. Chauhan, J. Chem. Eng. Data, 60, 47 (2015); https://doi.org/10.1021/je500647a.
- S. Chauhan, L. Pathania, K. Sharma and G. Kumar, J. Mol. Liq., 212, 656 (2015); https://doi.org/10.1016/j.molliq.2015.09.042.
- S. Glasstone, K.J. Laidler and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, McGraw Hill: New York (1941).
- D. Feakins, F.M. Bates, W.E. Waghorne and K.G. Lawrence, J. Chem. Soc., Faraday Trans., 89, 3381 (1993); https://doi.org/10.1039/FT9938903381.
- A. Pal and S. Kumar, J. Mol. Liq., 109, 23 (2004); https://doi.org/10.1016/j.molliq.2003.07.003.
References
G.A. Petsko and J.R. Yates III, Curr. Protoc. Bioinform., 36, 8.1.1 (2011); https://doi.org/10.1002/0471250953.bi0801s36.
T.C. Ramalho and E.F.F. Da Cunha, J. Biomol. Struct. Dyn., 28, 645 (2011); https://doi.org/10.1080/073911011010524975.
A. Ali, R. Patel and S. Khan and V. Bhushan, Z. Naturforsch., 64, 758 (2009); https://doi.org/10.1515/zna-2009-1113.
A. Ali, S. Sabir, A.K. Nain, S. Hyder, S. Ahmad, M. Tariq and R. Patel, J. Chin. Chem. Soc., 54, 659 (2007); https://doi.org/10.1002/jccs.200700094.
K. Zhuo, Q. Liu, Y. Wang, Q. Ren and J. Wang, J. Chem. Eng. Data, 51, 919 (2006); https://doi.org/10.1021/je050412t.
U.B. Kadam, A.P. Hiray, A.B. Sawant and M. Hasan, J. Chem. Eng. Data, 51, 60 (2006); https://doi.org/10.1021/je050169y.
S.A. Shaikh, S.R. Ahmed and B. Jayaram, Arch. Biochem. Biophys., 429, 81 (2004); https://doi.org/10.1016/j.abb.2004.05.019.
S. Chakravarty, V.S. Yadava, V. Kumar and K.K. Kannan, J. Biosci.,, 8, 491 (1985); https://doi.org/10.1007/BF02704000.
T.S. Banipal, J. Kaur, P.K. Banipal and K. Singh, J. Chem. Eng. Data, 53, 1803 (2008); https://doi.org/10.1021/je8001464.
A. Pal and S. Kumar, J. Chem. Thermodyn., 37, 1085 (2005); https://doi.org/10.1016/j.jct.2004.12.015.
A.K. Nain and D. Chand, J. Chem. Thermodyn., 41, 243 (2009); https://doi.org/10.1016/j.jct.2008.09.008.
D.P. Kharakoz, J. Phys. Chem., 95, 5634 (1991); https://doi.org/10.1021/j100167a049.
G.R. Hedwig and H. Hoiland, J. Chem. Thermodyn., 25, 349 (1993); https://doi.org/10.1006/jcht.1993.1035.
M. Sahayam and G.R. Hedwig, J. Chem. Thermodyn., 26, 361 (1994); https://doi.org/10.1006/jcht.1994.1045.
R. Bhat and J.C. Ahluwalia, J. Phys. Chem., 89, 1099 (1985); https://doi.org/10.1021/j100253a011.
T.V. Chalikian, A.P. Sarvazyan and K.J. Breslauer, J. Phys. Chem., 97, 13017 (1993); https://doi.org/10.1021/j100151a061.
T.V. Chalikian, A.P. Sarvazyan and K.J. Breslauer, J. Biophys. Chem., 51, 89 (1994); https://doi.org/10.1016/0301-4622(94)85007-0.
B. Sinha, B.K. Sarkar and M.N. Roy, J. Chem. Thermodyn., 40, 394 (2008); https://doi.org/10.1016/j.jct.2007.09.012.
M.J. Iqbal and M. Siddiquah, J. Braz. Chem. Soc., 17, 851 (2006); https://doi.org/10.1590/S0103-50532006000500006.
B. Hess and N.F.A. van der Vegt, J. Phys. Chem. B, 110, 17616 (2006); https://doi.org/10.1021/jp0641029.
M.S. Bakshi, J. Phys. Chem. C, 115, 13947 (2011); https://doi.org/10.1021/jp202454k.
H. Kumar and K. Kaur, Thermochim. Acta, 551, 40 (2013); https://doi.org/10.1016/j.tca.2012.10.018.
H. Kumar and K. Kaur, J. Mol. Liq., 173, 130 (2012); https://doi.org/10.1016/j.molliq.2012.07.008.
S. Chauhan, K. Singh, K. Kumar, S.C. Neelakantan and G. Kumar, J. Chem. Eng. Data, 61, 788 (2016); https://doi.org/10.1021/acs.jced.5b00549.
S. Kant, A. Kumar and S. Kumar, J. Mol. Liq., 150, 39 (2009); https://doi.org/10.1016/j.molliq.2009.09.010.
B. Sinha, V.K. Dakua and M.N. Roy, J. Chem. Eng. Data, 52, 1768 (2007); https://doi.org/10.1021/je7001418.
N.G. Tsierkezos and I.E. Molinou, J. Chem. Eng. Data, 43, 989 (1998); https://doi.org/10.1021/je9800914.
S. Chauhan, P. Chaudhary, K. Sharma, K. Kumar and Kiran, Chem. Pap., 67, 1442 (2013); https://doi.org/10.2478/s11696-013-0404-y.
K. Sharma and S. Chauhan, Thermochim. Acta, 578, 15 (2014); https://doi.org/10.1016/j.tca.2013.12.021.
S.S. Dhondge, S.P. Zodape and D.V. Parwate, J. Chem. Thermodyn., 48, 207 (2012); https://doi.org/10.1016/j.jct.2011.12.022.
K. Kaur and H. Kumar, J. Mol. Liq., 177, 49 (2013); https://doi.org/10.1016/j.molliq.2012.09.016.
G. Jones and M.J. Dole, J. Am. Chem. Soc., 51, 2950 (1929); https://doi.org/10.1021/ja01385a012.
S. Chauhan, K. Kumar, M.S. Chauhan, D.S. Rana and A. Umar, Adv. Sci. Eng. Med., 5, 991 (2013); https://doi.org/10.1166/asem.2013.1362.
D. Feakins, D.J. Freemantle and K.G. Lawrence, J. Chem. Soc., Faraday Trans., 70, 795 (1974); https://doi.org/10.1039/f19747000795.
K. Kumar, B.S. Patial and S. Chauhan, J. Chem. Eng. Data, 60, 47 (2015); https://doi.org/10.1021/je500647a.
S. Chauhan, L. Pathania, K. Sharma and G. Kumar, J. Mol. Liq., 212, 656 (2015); https://doi.org/10.1016/j.molliq.2015.09.042.
S. Glasstone, K.J. Laidler and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, McGraw Hill: New York (1941).
D. Feakins, F.M. Bates, W.E. Waghorne and K.G. Lawrence, J. Chem. Soc., Faraday Trans., 89, 3381 (1993); https://doi.org/10.1039/FT9938903381.
A. Pal and S. Kumar, J. Mol. Liq., 109, 23 (2004); https://doi.org/10.1016/j.molliq.2003.07.003.