Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Fundamental Study of Amadori Rearrangement Products in Reducing Sugar-Amino Acid Model System by Electrospray Ionization Mass Spectrometry and Computation
Corresponding Author(s) : E.D. Ruan
Asian Journal of Chemistry,
Vol. 26 No. 10 (2014): Vol 26 Issue 10
Abstract
It is crucial to characterize Amadori rearrangement products (ARPs) formed in the early stage of Maillard reaction, one of the most important modifications in food science. We setup a reaction model system using six selected amino acids (arginine, asparagines, glutamine, histamine, lysine and tryptophan) and their N-terminal acetylated forms with different reducing sugars for a fundamental study of Amadori rearrangement products. The effects on forming Amadori rearrangement products were studied by using electrospray ionization mass spectrometry (ESI-MS). The reaction rate was affected by reaction temperature, reaction time, property of sugars and amino acids and the fragmentation mechanism of Amadori rearrangement products was illustrated by tandem MS (MS2) with collision-induced dissociation. The proposed fragmentation mechanism of Amadori rearrangement products in MS2 was provided based on MS2 data and it was supported by their computational data of density functional theory (DFT) at the B3LYP/6-31++G(d,p) level.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.C. Maillard, C.R. Acad. Sci. Ser. 2, 154, 66 (1912).
- L.C. Maillard, C.R. Seances Soc. Biol. Paris, 72, 599 (1912).
- J.E. Hodge, J. Agric. Food Chem., 1, 928 (1953); doi:10.1021/jf60015a004.
- J.E. Hodge and C.E. Rist, J. Am. Chem. Soc., 75, 316 (1953); doi:10.1021/ja01098a019.
- A. Abrams, P.H. Lowy and H. Borsook, J. Am. Chem. Soc., 77, 4794 (1955); doi:10.1021/ja01623a030.
- T. Davidek, F. Robert, S. Devaud, F.A. Vera and I. Blank, J. Agric. Food Chem., 54, 6677 (2006); doi:10.1021/jf060668i.
- M. Roscic, C. Versluis, A.J. Kleinnijenhuis, S. Horvat and A.J. Heck, Rapid Commun. Mass Spectrom., 15, 1002 (2001); doi:10.1002/rcm.334.
- P.J. Thornalley, Ann. N. Y. Acad. Sci., 1043, 111 (2005); doi:10.1196/annals.1333.014.
- M.C. Thomas, J.W. Baynes, S.R. Thorpe and M.E. Cooper, Curr. Drug Targets, 6, 453 (2005); doi:10.2174/1389450054021873.
- O. Novotny, K. Cejpek and J. Velisek, Czech. J. Food Sci., 25, 119 (2007).
- F. Robert, F.A. Vera, F. Kervella, T. Davidek and I. Blank, Ann. N. Y. Acad. Sci., 1043, 63 (2005); doi:10.1196/annals.1333.008.
- A. Frolov, P. Hoffmann and R. Hoffmann, J. Mass Spectrom., 41, 1459 (2006); doi:10.1002/jms.1117.
- L.B. Fay and H. Brevard, Mass Spectrom. Rev., 24, 487 (2005); doi:10.1002/mas.20028.
- T. Yalcin and A.G. Harrison, J. Mass Spectrom., 31, 1237 (1996); doi:10.1002/(SICI)1096-9888(199611)31:11<1237::AID-JMS416>3.0.CO;2-P.
- A.D. Becke, Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
- T. Clark, J. Chandrasekhar, G.W. Spitznagel and P.R. Schleyer, J. Comput. Chem., 4, 294 (1983); doi:10.1002/jcc.540040303.
- V.F. Taylor, R.E. March, H.P. Longerich and C.J. Stadey, Int. J. Mass Spectrom., 243, 71 (2005); doi:10.1016/j.ijms.2005.01.001.
- S. Horvat and A. Jakas, J. Pept. Sci., 10, 119 (2004); doi:10.1002/psc.519.
- A. Jakas, A. Katic, N. Bionda and S. Horvat, Carbohydr. Res., 343, 2475 (2008); doi:10.1016/j.carres.2008.07.003.
- I. Jeric, C. Versluis, S. Horvat and A.J.R. Heck, J. Mass Spectrom., 37, 803 (2002); doi:10.1002/jms.337.
References
L.C. Maillard, C.R. Acad. Sci. Ser. 2, 154, 66 (1912).
L.C. Maillard, C.R. Seances Soc. Biol. Paris, 72, 599 (1912).
J.E. Hodge, J. Agric. Food Chem., 1, 928 (1953); doi:10.1021/jf60015a004.
J.E. Hodge and C.E. Rist, J. Am. Chem. Soc., 75, 316 (1953); doi:10.1021/ja01098a019.
A. Abrams, P.H. Lowy and H. Borsook, J. Am. Chem. Soc., 77, 4794 (1955); doi:10.1021/ja01623a030.
T. Davidek, F. Robert, S. Devaud, F.A. Vera and I. Blank, J. Agric. Food Chem., 54, 6677 (2006); doi:10.1021/jf060668i.
M. Roscic, C. Versluis, A.J. Kleinnijenhuis, S. Horvat and A.J. Heck, Rapid Commun. Mass Spectrom., 15, 1002 (2001); doi:10.1002/rcm.334.
P.J. Thornalley, Ann. N. Y. Acad. Sci., 1043, 111 (2005); doi:10.1196/annals.1333.014.
M.C. Thomas, J.W. Baynes, S.R. Thorpe and M.E. Cooper, Curr. Drug Targets, 6, 453 (2005); doi:10.2174/1389450054021873.
O. Novotny, K. Cejpek and J. Velisek, Czech. J. Food Sci., 25, 119 (2007).
F. Robert, F.A. Vera, F. Kervella, T. Davidek and I. Blank, Ann. N. Y. Acad. Sci., 1043, 63 (2005); doi:10.1196/annals.1333.008.
A. Frolov, P. Hoffmann and R. Hoffmann, J. Mass Spectrom., 41, 1459 (2006); doi:10.1002/jms.1117.
L.B. Fay and H. Brevard, Mass Spectrom. Rev., 24, 487 (2005); doi:10.1002/mas.20028.
T. Yalcin and A.G. Harrison, J. Mass Spectrom., 31, 1237 (1996); doi:10.1002/(SICI)1096-9888(199611)31:11<1237::AID-JMS416>3.0.CO;2-P.
A.D. Becke, Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
T. Clark, J. Chandrasekhar, G.W. Spitznagel and P.R. Schleyer, J. Comput. Chem., 4, 294 (1983); doi:10.1002/jcc.540040303.
V.F. Taylor, R.E. March, H.P. Longerich and C.J. Stadey, Int. J. Mass Spectrom., 243, 71 (2005); doi:10.1016/j.ijms.2005.01.001.
S. Horvat and A. Jakas, J. Pept. Sci., 10, 119 (2004); doi:10.1002/psc.519.
A. Jakas, A. Katic, N. Bionda and S. Horvat, Carbohydr. Res., 343, 2475 (2008); doi:10.1016/j.carres.2008.07.003.
I. Jeric, C. Versluis, S. Horvat and A.J.R. Heck, J. Mass Spectrom., 37, 803 (2002); doi:10.1002/jms.337.