Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Production and Characterization of Collagenolytic Protease from Bacillus licheniformis F11.4 Originated from Indonesia
Corresponding Author(s) : Maggy T. Suhartono
Asian Journal of Chemistry,
Vol. 26 No. 10 (2014): Vol 26 Issue 10
Abstract
Two mutant derivatives of the potent protease producing Bacillus licheniformis strain F11, originally isolated from Palembang, Sumatera, were checked for their capacity to secrete proteases: B. licheniformis F11.1, with a frame shift mutation in chiA and having deleted the genes for polyglutamate synthesis (genotype DchiA; Dpga) and B. licheniformis F11.4 with a deletion spanning both of the chitinase encoding genes (genotype DchiAB; Dpga). Bacillus licheniformis F11.4 was screened and isolated from Palembang, Indonesia. The bacteria produced collagenase enzyme when grown in a collagen media. The purpose of this study was to characterize the collagenase enzyme. Addition of collagen in the media accelerated the collagenase production time and increase the activity. The optimal temperature and pH of the enzyme were 50 °C and pH 9, respectively. At pH 12, the collagenase activity was still high. Collagenase activity was inhibited by Cu2+ (I mM) and stimulated by Co2+ (1 mM), Mg2+ (1 mM) and Ca2+ (1 mM). The collagenase from B. licheniformis F11.4 was capable of hydrolyzing collagen and other protein substrates such as casein, gelatin and fibrin.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.D. Bond and H.E. Van Wart, Biochem., 23, 3085 (1984); doi:10.1021/bi00308a036.
- T. Hisano, S. Abe, M. Wakashiro, A. Kimura and K. Murata, J. Ferment. Bioeng., 68, 399 (1989); doi:10.1016/0922-338X(89)90094-9.
- S. Asdornnithee, K. Akiyama, T. Sasaki and R. Takata, J. Ferment. Bioeng., 78, 283 (1994); doi:10.1016/0922-338X(94)90358-1.
- Q. Wu, C. Li, C. Li, H. Chen and L. Shuliang, Appl. Biochem. Biotechnol., 160, 129 (2010); doi:10.1007/s12010-009-8673-1.
- Y. Sakurai, H. Inoue, W. Nishii, T. Takahashi, Y. Iino, M. Yamamoto and K. Takahashi, Biosci. Biotechnol. Biochem., 73, 21 (2009); doi:10.1271/bbb.80357.
- D. Petrova, A. Derekova and S. Vlahov, Folia Microbiol., 51, 93 (2006); doi:10.1007/BF02932162.
- S. Asdornnithee, K. Akiyama, T. Sasaki and R. Takata, Biosci. Biotechnol. Biochem., 57, 1894 (1993); doi:10.1271/bbb.57.1894.
- J. Waldeck, D. Daum, B. Bisping and F. Meinhardt, Appl. Environ. Microbiol., 72, 7879 (2006); doi:10.1128/AEM.00938-06.
- K. Hoffmann, G. Daum, M. Koster, W.M. Kulicke, H. Meyer-Rammes, B. Bisping and F. Meinhardt, Appl. Environ. Microbiol., 76, 8211 (2010); doi:10.1128/AEM.01404-10.
- H.U. Bergmeyer, M. Graßl and H.E. Walter, in ed.: H.U. Bergmeyer and M. Grapl, Methods of Enzymatic Analysis, Weinheim: Verlag Chemie (1983).
- M.M. Bradford, Anal. Biochem., 72, 248 (1976); doi:10.1016/0003-2697(76)90527-3.
- U.K. Laemmli, Nature, 227, 680 (1970); doi:10.1038/227680a0.
- N.S. Choi, K.S. Yoon, J.Y. Lee, K.Y. Han and S.H. Kim, J. Biochem. Mol. Biol., 34, 531 (2001).
- I.H. Tran and H. Nagano, J. Food Sci., 67, 1184 (2002); doi:10.1111/j.1365-2621.2002.tb09474.x.
- W.C.A. Nascimento and M.L.L. Martins, Braz. J. Microbiol., 35, 91 (2004); doi:10.1590/S1517-83822004000100015.
- K. Adinarayana, P. Ellaiah and D.S. Prasad, AAPS PharmSciTech, 4, 440 (2003); doi:10.1208/pt040456.
- M. Okamoto, Y. Yonejima, Y. Tsujimoto, Y. Suzuki and K. Watanabe, Appl. Microbiol. Biotechnol., 57, 103 (2001); doi:10.1007/s002530100731.
- N. Hiroko and A.T. Kim, Biosci. Biotechnol. Biochem., 64, 181 (1999).
- R. Chakraborty and A.L. Chandra, J. Appl. Bacteriol., 61, 331 (1986); doi:10.1111/j.1365-2672.1986.tb04294.x.
- K.B. Beg, V. Sahai and R. Gupta, Process Biochem., 39, 203 (2003); doi:10.1016/S0032-9592(03)00064-5.
References
M.D. Bond and H.E. Van Wart, Biochem., 23, 3085 (1984); doi:10.1021/bi00308a036.
T. Hisano, S. Abe, M. Wakashiro, A. Kimura and K. Murata, J. Ferment. Bioeng., 68, 399 (1989); doi:10.1016/0922-338X(89)90094-9.
S. Asdornnithee, K. Akiyama, T. Sasaki and R. Takata, J. Ferment. Bioeng., 78, 283 (1994); doi:10.1016/0922-338X(94)90358-1.
Q. Wu, C. Li, C. Li, H. Chen and L. Shuliang, Appl. Biochem. Biotechnol., 160, 129 (2010); doi:10.1007/s12010-009-8673-1.
Y. Sakurai, H. Inoue, W. Nishii, T. Takahashi, Y. Iino, M. Yamamoto and K. Takahashi, Biosci. Biotechnol. Biochem., 73, 21 (2009); doi:10.1271/bbb.80357.
D. Petrova, A. Derekova and S. Vlahov, Folia Microbiol., 51, 93 (2006); doi:10.1007/BF02932162.
S. Asdornnithee, K. Akiyama, T. Sasaki and R. Takata, Biosci. Biotechnol. Biochem., 57, 1894 (1993); doi:10.1271/bbb.57.1894.
J. Waldeck, D. Daum, B. Bisping and F. Meinhardt, Appl. Environ. Microbiol., 72, 7879 (2006); doi:10.1128/AEM.00938-06.
K. Hoffmann, G. Daum, M. Koster, W.M. Kulicke, H. Meyer-Rammes, B. Bisping and F. Meinhardt, Appl. Environ. Microbiol., 76, 8211 (2010); doi:10.1128/AEM.01404-10.
H.U. Bergmeyer, M. Graßl and H.E. Walter, in ed.: H.U. Bergmeyer and M. Grapl, Methods of Enzymatic Analysis, Weinheim: Verlag Chemie (1983).
M.M. Bradford, Anal. Biochem., 72, 248 (1976); doi:10.1016/0003-2697(76)90527-3.
U.K. Laemmli, Nature, 227, 680 (1970); doi:10.1038/227680a0.
N.S. Choi, K.S. Yoon, J.Y. Lee, K.Y. Han and S.H. Kim, J. Biochem. Mol. Biol., 34, 531 (2001).
I.H. Tran and H. Nagano, J. Food Sci., 67, 1184 (2002); doi:10.1111/j.1365-2621.2002.tb09474.x.
W.C.A. Nascimento and M.L.L. Martins, Braz. J. Microbiol., 35, 91 (2004); doi:10.1590/S1517-83822004000100015.
K. Adinarayana, P. Ellaiah and D.S. Prasad, AAPS PharmSciTech, 4, 440 (2003); doi:10.1208/pt040456.
M. Okamoto, Y. Yonejima, Y. Tsujimoto, Y. Suzuki and K. Watanabe, Appl. Microbiol. Biotechnol., 57, 103 (2001); doi:10.1007/s002530100731.
N. Hiroko and A.T. Kim, Biosci. Biotechnol. Biochem., 64, 181 (1999).
R. Chakraborty and A.L. Chandra, J. Appl. Bacteriol., 61, 331 (1986); doi:10.1111/j.1365-2672.1986.tb04294.x.
K.B. Beg, V. Sahai and R. Gupta, Process Biochem., 39, 203 (2003); doi:10.1016/S0032-9592(03)00064-5.