Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Characterization of (SBA-15)-Lipase Composite Material
Corresponding Author(s) : Qing-Zhou Zhai
Asian Journal of Chemistry,
Vol. 26 No. 10 (2014): Vol 26 Issue 10
Abstract
Santa Barbara Amorphous (SBA)-15 mesoporous material was synthesized by hydrothermal method using tri-block copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic P123) as a structure-directing agent and then phenyltriethoxysilane was used to to obtain phenylated SBA-15. Then physical adsorptive method was employed to immobilize lipase to the host material. The immobilized efficiency of enzyme was improved to some extent for the phenylated SBA-15. For structural characterization of prepared samples, powder X-ray diffraction, Fourier transform infrared spectroscopy and low temperature N2 adsorption-desorption at 77 K were used. The study confirmed that the enzyme went into the pore channels of the SBA-15. Scanning electron microscopic studies showed that the average particle diameter of (SBA-15)-lipase was 337 ± 10 nm, while the average particle diameter of (phenylated SBA-15)-lipase was 340 ± 10 nm. Luminescent spectra showed that the enzyme had already successfully been immobilized to the host materials and after the enzyme was immobilized into host materials the configuration had not been changed. The experimental results of activity on the hydrolysis of glycerol triacetate catalyzed by lipase indicated that compared the immobilized lipase with free lipase the catalytic activity was enhanced and the catalytic use rate of lipase was improved and the ability of resistance to temperature was improved. The repeated use number of the phenylated SBA-15 immobilized lipase as catalyst was improved compared with that of SBA-15 immobilized lipase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.I. Kallenberg, F. van Rantwijk and R.A. Sheldon, Adv. Synth. Catal., 347, 905 (2005); doi:10.1002/adsc.200505042.
- B. Zhao, B. Shi and R. Ma, Eng. Life Sci., 5, 436 (2005); doi:10.1002/elsc.200520094.
- J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson and E.W. Sheppard, J. Am. Chem. Soc., 114, 10834 (1992); doi:10.1021/ja00053a020.
- C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck, Nature, 359, 710 (1992); doi:10.1038/359710a0.
- D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, Science, 279, 548 (1998); doi:10.1126/science.279.5350.548.
- D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka and G.D. Stucky, J. Am. Chem. Soc., 120, 6024 (1998); doi:10.1021/ja974025i.
- M.F. Ottaviani, L. Mollo and B.J. Fubini, J. Colloid Interf. Sci., 191, 154 (1997); doi:10.1006/jcis.1997.4926.
- B. Menaa, F. Menaa, C.A. Guimaraes and O. Sharts, Int. J. Nanotechnol., 7, 29546 (2010); doi:10.1504/IJNT.2010.029546.
- B. Menaa, Y. Miyagawa, M. Takahashi, M. Herrero, V. Rives, F. Menaa and D.K. Eggers, Biopolymers, 91, 895 (2009); doi:10.1002/bip.21274.
- J.F. Diaz and K.J. Balkus Jr., J. Mol. Catal. B, 2, 115 (1996); doi:10.1016/S1381-1177(96)00017-3.
- H.H.P. Yiu, P.A. Wright and N.P. Botting, Micropor. Mesopor. Mater., 44-45, 763 (2001); doi:10.1016/S1387-1811(01)00258-X.
- L. Ji, A. Katiyar, N.G. Pinto, M. Jaroniec and P.G. Smirniotis, Micropor. Mesopor. Mater., 75, 221 (2004); doi:10.1016/j.micromeso.2004.07.012.
- B. Stellmach, Determination Method of Enzyme, China Light Industry Press, Beijing, p. 211 (1992).
- Z. Luan, M. Hartmann, D. Zhao, W. Zhou and L. Kevan, Chem. Mater., 11, 1621 (1999); doi:10.1021/cm9900756.
- Q.Z. Zhai and D. Yang, Asian J. Chem., 21, 2207 (2009).
- Q.S. Wang, Q.Z. Zhai and J. Luo, Asian J. Chem., 25, 5470 (2013); doi:10.14233/ajchem.2013.14820.
- S. Brunauer, P.H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938); doi:10.1021/ja01269a023.
- E.P. Barrett, L.G. Joyner and P.P. Halenda, J. Am. Chem. Soc., 73, 373 (1951); doi:10.1021/ja01145a126.
- G.A. Parks, Chem. Rev., 65, 177 (1965); doi:10.1021/cr60234a002.
- S.W. Song, K. Hidajat and S.F. Kawi, Langmuir, 21, 9568 (2005); doi:10.1021/la051167e.
- T.P.B. Nguyen, J.W. Lee, W.G. Shim and H. Moon, Micropor. Mesopor. Mater., 110, 560 (2008); doi:10.1016/j.micromeso.2007.06.054.
- Y.G. Liu, Q. Xu, X.M. Feng, J.J. Zhu and H.W. Hou, Anal. Bioanal. Chem., 387, 1553 (2007); doi:10.1007/s00216-006-1064-3.
- K.S.W. Sing, Pure Appl. Chem., 57, 603 (1985); doi:10.1351/pac198557040603.
References
A.I. Kallenberg, F. van Rantwijk and R.A. Sheldon, Adv. Synth. Catal., 347, 905 (2005); doi:10.1002/adsc.200505042.
B. Zhao, B. Shi and R. Ma, Eng. Life Sci., 5, 436 (2005); doi:10.1002/elsc.200520094.
J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson and E.W. Sheppard, J. Am. Chem. Soc., 114, 10834 (1992); doi:10.1021/ja00053a020.
C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck, Nature, 359, 710 (1992); doi:10.1038/359710a0.
D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, Science, 279, 548 (1998); doi:10.1126/science.279.5350.548.
D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka and G.D. Stucky, J. Am. Chem. Soc., 120, 6024 (1998); doi:10.1021/ja974025i.
M.F. Ottaviani, L. Mollo and B.J. Fubini, J. Colloid Interf. Sci., 191, 154 (1997); doi:10.1006/jcis.1997.4926.
B. Menaa, F. Menaa, C.A. Guimaraes and O. Sharts, Int. J. Nanotechnol., 7, 29546 (2010); doi:10.1504/IJNT.2010.029546.
B. Menaa, Y. Miyagawa, M. Takahashi, M. Herrero, V. Rives, F. Menaa and D.K. Eggers, Biopolymers, 91, 895 (2009); doi:10.1002/bip.21274.
J.F. Diaz and K.J. Balkus Jr., J. Mol. Catal. B, 2, 115 (1996); doi:10.1016/S1381-1177(96)00017-3.
H.H.P. Yiu, P.A. Wright and N.P. Botting, Micropor. Mesopor. Mater., 44-45, 763 (2001); doi:10.1016/S1387-1811(01)00258-X.
L. Ji, A. Katiyar, N.G. Pinto, M. Jaroniec and P.G. Smirniotis, Micropor. Mesopor. Mater., 75, 221 (2004); doi:10.1016/j.micromeso.2004.07.012.
B. Stellmach, Determination Method of Enzyme, China Light Industry Press, Beijing, p. 211 (1992).
Z. Luan, M. Hartmann, D. Zhao, W. Zhou and L. Kevan, Chem. Mater., 11, 1621 (1999); doi:10.1021/cm9900756.
Q.Z. Zhai and D. Yang, Asian J. Chem., 21, 2207 (2009).
Q.S. Wang, Q.Z. Zhai and J. Luo, Asian J. Chem., 25, 5470 (2013); doi:10.14233/ajchem.2013.14820.
S. Brunauer, P.H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938); doi:10.1021/ja01269a023.
E.P. Barrett, L.G. Joyner and P.P. Halenda, J. Am. Chem. Soc., 73, 373 (1951); doi:10.1021/ja01145a126.
G.A. Parks, Chem. Rev., 65, 177 (1965); doi:10.1021/cr60234a002.
S.W. Song, K. Hidajat and S.F. Kawi, Langmuir, 21, 9568 (2005); doi:10.1021/la051167e.
T.P.B. Nguyen, J.W. Lee, W.G. Shim and H. Moon, Micropor. Mesopor. Mater., 110, 560 (2008); doi:10.1016/j.micromeso.2007.06.054.
Y.G. Liu, Q. Xu, X.M. Feng, J.J. Zhu and H.W. Hou, Anal. Bioanal. Chem., 387, 1553 (2007); doi:10.1007/s00216-006-1064-3.
K.S.W. Sing, Pure Appl. Chem., 57, 603 (1985); doi:10.1351/pac198557040603.