Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fluorescence Spectroscopy in Study of Human-like Collagen and Endotoxin Interactions
Corresponding Author(s) : Dai-Di Fan
Asian Journal of Chemistry,
Vol. 26 No. 11 (2014): Vol 26 Issue 11
Abstract
Removal of endotoxins from recombinant proteins is a critical and challenging step in the preparation of intravenous therapeutics, because of their potent biological activities causing pyrogenic and shock reactions. However, the interaction between protein and endotoxin makes it more complicated to remove endotoxin from target protein. In this paper, the binding of endotoxin with human-like collagen was investigated by fluorescence spectroscopy and the effect of surfactants on the human-like collagen-endotoxin complex was studied. The fluorescence titration results revealed that endotoxin has a strong ability to quench the intrinsic fluorescence of human-like collagen through static quenching mechanism according to the Stern-Volmer equation. The binding constants and the corresponding thermodynamic parameters at different temperatures were calculated, which showed that the hydrophobic force played a major role in the interaction of endotoxin with human-like collagen. In addition, Triton X-100 was described to remove endotoxin from human-like collagen. All these results and theoretical data clarified that endotoxin could interact with human-like collagen to form the complex and Triton X-100 has proven to be effective in the process of endotoxin removal, which could be a useful guideline for further endotoxin removal from recombinant protein.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.S. de Freitas, R.L. Machado, E.J. de Arruda, C.C. Santana and S.M.A. Bueno, J. Membr. Sci., 234, 67 (2004); doi:10.1016/j.memsci.2003.12.019.
- F.B. Anspach, J. Biochem. Biophys. Methods, 49, 665 (2001); doi:10.1016/S0165-022X(01)00228-7.
- S.I. Morse, Adv. Appl. Microbiol., 20, 9 (1976); doi:10.1016/S0065-2164(08)70106-0.
- D. Fumarola, Cell. Immunol., 58, 216 (1981); doi:10.1016/0008-8749(81)90163-5.
- D. Petsch and F.B. Anspach, J. Biotechnol., 76, 97 (2000); doi:10.1016/S0168-1656(99)00185-6.
- K.C. Hou and R. Zaniewski, J. Pharm. Sci. Technol., 44, 204 (1990).
- H.W. Zhao, M. Ge, Z.X. Zhang, W.F. Wang and G.Z. Wu, Spectrochim. Acta A, 65, 811 (2006); doi:10.1016/j.saa.2005.12.038.
- F.Q. Cheng, Y.P. Wang, Z.P. Li and C. Dong, Spectrochim. Acta A, 65, 1144 (2006); doi:10.1016/j.saa.2006.01.024.
- D.B. Cordes, S. Gamsey and B. Singaram, Angew. Chem. Int. Ed., 45, 3829 (2006); doi:10.1002/anie.200504390.
- M.S. Matos, J. Hofkens and M.H. Gehlen, J. Fluoresc., 18, 821 (2008); doi:10.1007/s10895-007-0309-7.
- D.D. Fan, M.R. Duan, Y. Mi, J.R. Song, J.F. Xi, D.W. Wang and G.Z. Wang, J. Chem. Ind. Eng. (China), 53, 752 (2002).
- X.F. Hua, D.D. Fan, Y.E. Luo, X. Zhang, H.J. Shi, Y. Mi, X.X. Ma, L.A. Shang and G.F. Zhao, Chin. J. Chem. Eng., 14, 242 (2006); doi:10.1016/S1004-9541(06)60065-7.
- Y. Zhai and F.Z. Cui, J. Cryst. Growth, 291, 202 (2006); doi:10.1016/j.jcrysgro.2006.03.006.
- K. Hu, F.Z. Cui, Q. Lv, J. Ma, Q.L. Feng, L. Xu and D.D. Fan, J. Biomed. Mater. Res. A, 84A, 483 (2008); doi:10.1002/jbm.a.31440.
- K. Hu, Q. Lv, F.Z. Cui, Q.L. Feng and X.D. Kong, J. Bioact. Compat. Polym., 21, 23 (2006); doi:10.1177/0883911506060455.
- C.H. Zhu, D.D. Fan, X.X. Ma, W.J. Xue, Y.Y. Yu, Y.E. Luo, B.W. Liu and L. Chen, J. Bioact. Compat. Polym., 24, 560 (2009); doi:10.1177/0883911509349689.
- Z. Yuan, M. Yu, J.H. Li, G.H. Hou and H.Y. Wang, Biomaterials, 26, 2741 (2005); doi:10.1016/j.biomaterials.2004.07.027.
- F.C. Pearson, Pyrogens: Endotoxins, LAL-testing and Depyrogenation, Marcel Dekker, New York & Basel (1985).
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum, New York, edn 2 (1999).
- X.M. He and D.C. Carter, Nature, 358, 209 (1992); doi:10.1038/358209a0.
- H.N. Hou, Z.D. Qi, Y.-W. OuYang, F.-L. Liao, Y. Zhang and Y. Liu, J. Pharm. Biomed. Anal., 47, 134 (2008); doi:10.1016/j.jpba.2007.12.029.
- X.Z. Feng, Z. Lin, L.J. Yang, C. Wang and C.L. Bai, Talanta, 47, 1223 (1998); doi:10.1016/S0039-9140(98)00198-2.
- A. Papadopoulou, R.J. Green and R.A. Frazier, J. Agric. Food Chem., 53, 158 (2005); doi:10.1021/jf048693g.
- S.F. Sun, B. Zhou, H.N. Hou, Y. Liu and G.Y. Xiang, Int. J. Biol. Macromol., 39, 197 (2006); doi:10.1016/j.ijbiomac.2006.03.020.
- P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); doi:10.1021/bi00514a017.
References
S.S. de Freitas, R.L. Machado, E.J. de Arruda, C.C. Santana and S.M.A. Bueno, J. Membr. Sci., 234, 67 (2004); doi:10.1016/j.memsci.2003.12.019.
F.B. Anspach, J. Biochem. Biophys. Methods, 49, 665 (2001); doi:10.1016/S0165-022X(01)00228-7.
S.I. Morse, Adv. Appl. Microbiol., 20, 9 (1976); doi:10.1016/S0065-2164(08)70106-0.
D. Fumarola, Cell. Immunol., 58, 216 (1981); doi:10.1016/0008-8749(81)90163-5.
D. Petsch and F.B. Anspach, J. Biotechnol., 76, 97 (2000); doi:10.1016/S0168-1656(99)00185-6.
K.C. Hou and R. Zaniewski, J. Pharm. Sci. Technol., 44, 204 (1990).
H.W. Zhao, M. Ge, Z.X. Zhang, W.F. Wang and G.Z. Wu, Spectrochim. Acta A, 65, 811 (2006); doi:10.1016/j.saa.2005.12.038.
F.Q. Cheng, Y.P. Wang, Z.P. Li and C. Dong, Spectrochim. Acta A, 65, 1144 (2006); doi:10.1016/j.saa.2006.01.024.
D.B. Cordes, S. Gamsey and B. Singaram, Angew. Chem. Int. Ed., 45, 3829 (2006); doi:10.1002/anie.200504390.
M.S. Matos, J. Hofkens and M.H. Gehlen, J. Fluoresc., 18, 821 (2008); doi:10.1007/s10895-007-0309-7.
D.D. Fan, M.R. Duan, Y. Mi, J.R. Song, J.F. Xi, D.W. Wang and G.Z. Wang, J. Chem. Ind. Eng. (China), 53, 752 (2002).
X.F. Hua, D.D. Fan, Y.E. Luo, X. Zhang, H.J. Shi, Y. Mi, X.X. Ma, L.A. Shang and G.F. Zhao, Chin. J. Chem. Eng., 14, 242 (2006); doi:10.1016/S1004-9541(06)60065-7.
Y. Zhai and F.Z. Cui, J. Cryst. Growth, 291, 202 (2006); doi:10.1016/j.jcrysgro.2006.03.006.
K. Hu, F.Z. Cui, Q. Lv, J. Ma, Q.L. Feng, L. Xu and D.D. Fan, J. Biomed. Mater. Res. A, 84A, 483 (2008); doi:10.1002/jbm.a.31440.
K. Hu, Q. Lv, F.Z. Cui, Q.L. Feng and X.D. Kong, J. Bioact. Compat. Polym., 21, 23 (2006); doi:10.1177/0883911506060455.
C.H. Zhu, D.D. Fan, X.X. Ma, W.J. Xue, Y.Y. Yu, Y.E. Luo, B.W. Liu and L. Chen, J. Bioact. Compat. Polym., 24, 560 (2009); doi:10.1177/0883911509349689.
Z. Yuan, M. Yu, J.H. Li, G.H. Hou and H.Y. Wang, Biomaterials, 26, 2741 (2005); doi:10.1016/j.biomaterials.2004.07.027.
F.C. Pearson, Pyrogens: Endotoxins, LAL-testing and Depyrogenation, Marcel Dekker, New York & Basel (1985).
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum, New York, edn 2 (1999).
X.M. He and D.C. Carter, Nature, 358, 209 (1992); doi:10.1038/358209a0.
H.N. Hou, Z.D. Qi, Y.-W. OuYang, F.-L. Liao, Y. Zhang and Y. Liu, J. Pharm. Biomed. Anal., 47, 134 (2008); doi:10.1016/j.jpba.2007.12.029.
X.Z. Feng, Z. Lin, L.J. Yang, C. Wang and C.L. Bai, Talanta, 47, 1223 (1998); doi:10.1016/S0039-9140(98)00198-2.
A. Papadopoulou, R.J. Green and R.A. Frazier, J. Agric. Food Chem., 53, 158 (2005); doi:10.1021/jf048693g.
S.F. Sun, B. Zhou, H.N. Hou, Y. Liu and G.Y. Xiang, Int. J. Biol. Macromol., 39, 197 (2006); doi:10.1016/j.ijbiomac.2006.03.020.
P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); doi:10.1021/bi00514a017.