Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Biological Contact Oxidation Fluidized Bed in Treatment of Nitrogen Waste Water
Corresponding Author(s) : Quanmin Bu
Asian Journal of Chemistry,
Vol. 26 No. 11 (2014): Vol 26 Issue 11
Abstract
In order to ameliorate the treatment of nitrogen waste water using biological contact oxidation fluidized bed, the feasibility, method and effect of simulated wastewater using biological contact oxidation fluidized bed under natural temperature is explored. The experimental results show that: ammonia nitrogen is oxidized to nitrate through catalysis of two independent bacteria; the suitable reaction temperature is 20-35 ºC; nitrite bacteria’s optimum pH value is 7.0-8.5, nitrate bacteria’s pH value is 6.0-7.5; better nitrification effect can be realized with proportion between nitrite bacteria and nitrate bacteria dissolved oxygen of more than 0.5 mg/L filler particle size should be over 10 mm to enhance removal efficiency of ammonia nitrogen ; Intermittent feeding mode makes activated sludge have good settlement, and can offer good environmental conditions for removal of ammonia nitrogen.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.W. Chen and Z.C. Wu, Chin. J. Environ. Eng., 4, 540 (2010).
- K. Czerwionka, J. Makinia, K.R. Pagilla and H.D. Stensel, Water Res., 46, 2057 (2012); doi:10.1016/j.watres.2012.01.020.
- L.E. McQuade and S.J. Lippard, Curr. Opin. Chem. Biol., 14, 43 (2010); doi:10.1016/j.cbpa.2009.10.004.
- C. Wu, Y. Peng, S. Wang, X. Li and R. Wang, Chin. J. Chem. Eng., 19, 512 (2011); doi:10.1016/S1004-9541(11)60014-1.
- F. Cui, S. Lee and M. Kim, Water Res., 45, 5279 (2011); doi:10.1016/j.watres.2011.07.030.
- S. Duda, J.E. Stout and R. Vidic, HVAC&R Res., 17, 872 (2011).
- L.M. Gieg, T.R. Jack and J.M. Foght, Appl. Microbiol. Biotechnol., 92, 263 (2011); doi:10.1007/s00253-011-3542-6.
- L. Ding, J.C. Tang, Z.Z. Ying, Y.X. Zhao, M. Xu and Z.X. Liu, Chin. Water Wastes Water, 26, 116 (2010).
- D.C. Botia, M.S. Rodriguez and V.M. Sarria, Chemosphere, 89, 732 (2012); doi:10.1016/j.chemosphere.2012.06.046.
- X.M. Han. J.W. Martin, T. Barri, X. Han, P.M. Fedorak, M.G. El-Din, L. Perez, A.C. Scott and J.T. Jiang, Environ. Sci. Technol., 44, 8350 (2010); doi:10.1021/es101556z.
- Y.S. Wong, M.O.A.B. Kadir and T.T. Teng, Bioresour. Technol., 100, 4969 (2010); doi:10.1016/j.biortech.2009.04.074.
- B. Farizoglu and S. Uzuner, Biochem. Eng. J., 57, 46 (2011); doi:10.1016/j.bej.2011.08.007.
- M. Neifar, A. Jaouani, M.J. Martinez and M.J. Penninckx, J. Microbiol., 50, 746 (2012); doi:10.1007/s12275-012-2079-4.
- S. Harvey and M. Dixon, Int. J. Hydrogen Energy, 35, 9611 (2010); doi:10.1016/j.ijhydene.2010.06.042.
- S. Munzi, T. Pisani and S. Loppi, Ecotoxicol. Environ. Saf., 72, 2009 (2009); doi:10.1016/j.ecoenv.2009.05.005.
- P. Bogino, F. Nievas, E. Banchio and W. Giordano, Eur. J. Soil Biol., 47, 188 (2011); doi:10.1016/j.ejsobi.2011.01.005.
- J. Desloover, S.E. Vlaeminck, P. Clauwaert, W. Verstraete and N. Boon, Curr. Opin. Biotechnol., 23, 474 (2012); doi:10.1016/j.copbio.2011.12.030.
- D. Austin and J. Nivala, Ecol. Eng., 35, 184 (2009); doi:10.1016/j.ecoleng.2008.03.002.
- S.G. Won and C.S. Ra, Water Res., 45, 171 (2011); doi:10.1016/j.watres.2010.08.030.
References
G.W. Chen and Z.C. Wu, Chin. J. Environ. Eng., 4, 540 (2010).
K. Czerwionka, J. Makinia, K.R. Pagilla and H.D. Stensel, Water Res., 46, 2057 (2012); doi:10.1016/j.watres.2012.01.020.
L.E. McQuade and S.J. Lippard, Curr. Opin. Chem. Biol., 14, 43 (2010); doi:10.1016/j.cbpa.2009.10.004.
C. Wu, Y. Peng, S. Wang, X. Li and R. Wang, Chin. J. Chem. Eng., 19, 512 (2011); doi:10.1016/S1004-9541(11)60014-1.
F. Cui, S. Lee and M. Kim, Water Res., 45, 5279 (2011); doi:10.1016/j.watres.2011.07.030.
S. Duda, J.E. Stout and R. Vidic, HVAC&R Res., 17, 872 (2011).
L.M. Gieg, T.R. Jack and J.M. Foght, Appl. Microbiol. Biotechnol., 92, 263 (2011); doi:10.1007/s00253-011-3542-6.
L. Ding, J.C. Tang, Z.Z. Ying, Y.X. Zhao, M. Xu and Z.X. Liu, Chin. Water Wastes Water, 26, 116 (2010).
D.C. Botia, M.S. Rodriguez and V.M. Sarria, Chemosphere, 89, 732 (2012); doi:10.1016/j.chemosphere.2012.06.046.
X.M. Han. J.W. Martin, T. Barri, X. Han, P.M. Fedorak, M.G. El-Din, L. Perez, A.C. Scott and J.T. Jiang, Environ. Sci. Technol., 44, 8350 (2010); doi:10.1021/es101556z.
Y.S. Wong, M.O.A.B. Kadir and T.T. Teng, Bioresour. Technol., 100, 4969 (2010); doi:10.1016/j.biortech.2009.04.074.
B. Farizoglu and S. Uzuner, Biochem. Eng. J., 57, 46 (2011); doi:10.1016/j.bej.2011.08.007.
M. Neifar, A. Jaouani, M.J. Martinez and M.J. Penninckx, J. Microbiol., 50, 746 (2012); doi:10.1007/s12275-012-2079-4.
S. Harvey and M. Dixon, Int. J. Hydrogen Energy, 35, 9611 (2010); doi:10.1016/j.ijhydene.2010.06.042.
S. Munzi, T. Pisani and S. Loppi, Ecotoxicol. Environ. Saf., 72, 2009 (2009); doi:10.1016/j.ecoenv.2009.05.005.
P. Bogino, F. Nievas, E. Banchio and W. Giordano, Eur. J. Soil Biol., 47, 188 (2011); doi:10.1016/j.ejsobi.2011.01.005.
J. Desloover, S.E. Vlaeminck, P. Clauwaert, W. Verstraete and N. Boon, Curr. Opin. Biotechnol., 23, 474 (2012); doi:10.1016/j.copbio.2011.12.030.
D. Austin and J. Nivala, Ecol. Eng., 35, 184 (2009); doi:10.1016/j.ecoleng.2008.03.002.
S.G. Won and C.S. Ra, Water Res., 45, 171 (2011); doi:10.1016/j.watres.2010.08.030.