Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Spectral Studies of Some Bioactive Transition Metal Complexes of [bis-2-(4-Fluorophenyl)prop-2-enaln]ethane-1,2-diamine
Corresponding Author(s) : Jagvir Singh
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Co(II), Ni(II) and Cu(II) metal complexes of a novel Schiff base ligand (SBL) derived from condensation of 2-(4-fluorophenyl)prop-2-enaln and ethane-1,2-diamine were synthesized. All the complexes were characterized by elemental analyses, IR, UV-visible spectroscopy, magnetic susceptibility and conductance measurements and 1H NMR. From the elemental analysis data, 1:1 [M]:[ligand] metal chloride complexes are formed having the general composition [M(SBL)Cl2] and [Cu(SBL)] Cl2, [where M = Co(II), Ni(II) and SBL= {bis-2-(4-fluorophenyl)prop-2-enaln}ethane-1,2-diamine]. The result showed that the ligand is coordinated to the metal ions in a neutral tetradentate manner with ON donor sites and the nature of metal-ligand bonding can range from covalent to ionic. Antimicrobial activities of the newly synthesized chemical compounds were evaluated against Staphylococcus aureus (ATCC 25923), Staphylococcus aureus (ATCC 3160), Cabdida albicans (ATCC 227) and Staphylococcus cereviscae (ATCC 361) species and found that metal complexes exhibited more antimicrobial properties so they are more potential and significant than the ligand.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Kundu, A.K. Pramanik, A.S. Mondal and T.K. Mondal, J. Mol. Struct., 1116, 1 (2016); https://doi.org/10.1016/j.molstruc.2016.03.013.
- A.A. Abdel Aziz, A.N.M. Salem, M.A. Sayed and M.M. Aboaly, J. Mol. Struct., 1010, 130 (2012); https://doi.org/10.1016/j.molstruc.2011.11.043.
- Z.L. You, H.L. Zhu and W.S. Liu, Z. Anorg. Allg. Chem., 630, 1617 (2004); https://doi.org/10.1002/zaac.200400125.
- A. Golcu, M. Tumer, H. Demirelli, R.A. Wheatley, Inorg. Chim. Acta, 358, 1785 (2005); https://doi.org/10.1016/j.ica.2004.11.026.
- S.K. Tadavi, A.A. Yadav and R.S. Bendre, J. Mol. Struct., 1152, 223 (2018); https://doi.org/10.1016/j.molstruc.2017.09.112.
- R.C. Maurya, P. Patel and S. Rajput, Inorg. Met., 33, 817 (2003); https://doi.org/10.1081/SIM-120021648.
- U. Bohme and B. Gunther, Inorg. Chem. Commun., 10, 482 (2007); https://doi.org/10.1016/j.inoche.2007.01.008.
- L.C. Felton and J.H. Brewer, Science, 105, 409 (1947); https://doi.org/10.1126/science.105.2729.409.
- K. Naresh Kumar and R. Ramesh, Polyhedron, 24, 1885 (2005); https://doi.org/10.1016/j.poly.2005.05.020.
- A.N. Kursunlu, E. Guler, F. Sevgi and B. Ozkalp, J. Mol. Struct., 1048, 476 (2013); https://doi.org/10.1016/j.molstruc.2013.06.017.
- K.J. Kilpin, W. Henderson and B.K. Nicholson, Polyhedron, 26, 204 (2007); https://doi.org/10.1016/j.poly.2006.08.009.
- K. Kumar, M. Kamboj, K. Jain and D.P. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 243 (2014); https://doi.org/10.1016/j.saa.2014.02.128.
- S.A. Patil, V.H. Naik, A.D. Kulkarni and P.S. Badami, J. Sulfur Chem., 31, 109 (2010); https://doi.org/10.1080/17415991003668186.
- A.D. Kulkarni, S.A. Patil and P.S. Badami, J. Sulfur Chem., 30, 145 (2009); https://doi.org/10.1080/17415990802663133.
- S.K. Sridhar, S.N. Pandeya, J.P. Stables and A. Ramesh, Eur. J. Pharm. Sci., 16, 129 (2002); https://doi.org/10.1016/S0928-0987(02)00077-5.
- S.N. Pandeya, P. Yogeeswari, D. Sriram, E. de Clercq, C. Pannecouque and M. Witvrouw, Chemotherapy, 45, 192 (1999); https://doi.org/10.1159/000007182.
- D.P. Singh, V. Malik, K. Kumar, C. Sharma and K.R. Aneja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 76, 45 (2010); https://doi.org/10.1016/j.saa.2010.02.044.
- I. Ahmad and A.Z. Beg, J. Ethnopharmacol., 74, 113 (2001); https://doi.org/10.1016/S0378-8741(00)00335-4.
- M.V. Andrews, J. Shaffer and D.C. McCain, J. Inorg. Nucl. Chem., 33, 3945 (1971); https://doi.org/10.1016/0022-1902(71)80301-9.
- R. Pfragner and R.I. Freshney, Culture of Human Tumor Cells, John Wiley & Sons (2004).
- T.C. Birdsall, Altern. Med. Rev., 3, 271 (1998).
- L.R. Rudnick, Lubricant Additives, Chemistry Applications, edn 2, CRC Press, Boca Raton (2009).
- K. Buldurun, N. Turan, A. Savci and N. Çolak, J. Saudi Chem. Soc., 23, 205 (2019); https://doi.org/10.1016/j.jscs.2018.06.002.
- H.S. Çalik, E. Ispir, S. Karabuga and M. Aslantas, J. Organomet. Chem., 801, 122 (2016); https://doi.org/10.1016/j.jorganchem.2015.10.028.
- X. Dong, Y. Wang and Z. Qin, Acta Pharmacol. Sin., 30, 379 (2009); https://doi.org/10.1038/aps.2009.24.
- P.A. Vigato and S. Tamburini, Coord. Chem. Rev., 248, 1717 (2004); https://doi.org/10.1016/j.cct.2003.09.003.
- K. Shivakumar, P. Shashidhar, P. Vithal Reddy and M.B. Halli, J. Coord. Chem., 61, 2274 (2008); https://doi.org/10.1080/00958970801905239.
- G.G. Mohamed, M.M. Omar and M.M. Hindy, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 62, 1140 (2005); https://doi.org/10.1016/j.saa.2005.03.031.
- K. Nakamoto and S.J. McCarthy, Spectroscopy & Structure of Metal Chelate Compounds, John Wiley & Sons: USA (1968).
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam (1968).
- B.N. Figgis, Introduction to Ligand Fields, edn 1, p. 263 (1966).
- L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall: London, edn 3 (1975).
- P.K. Shama and S.N. Dubey, Indian J. Chem., 33A, 1113 (1994).
- T. Ahamad, N. Nishat and S. Parveen, J. Coord. Chem., 61, 1963 (2008); https://doi.org/10.1080/00958970701795698.
- I.T. Ahmed, Transition Met. Chem., 32, 674 (2007); https://doi.org/10.1007/s11243-007-0232-4.
- J.C. Rasmussen, H. Toftlund, A.N. Nivorzhkin, J. Bourassa and P.C. Ford, Inorg. Chim. Acta, 251, 291 (1996); https://doi.org/10.1016/S0020-1693(96)05282-6.
- M.C. Cardia, M. Begala, A. Delogu, E. Maccioni and A. Plumitallo, Il Pharmaco, 55, 93 (2000); https://doi.org/10.1016/S0014-827X(99)00124-X.
- N. Turan and K. Buldurun, Eur. J. Chem., 9, 22 (2018); https://doi.org/10.5155/eurjchem.9.1.22-29.1671.
- M. Sebastian, V. Arun, P.P. Robinson, A.A. Varghese, R. Abraham, E. Suresh and K.K.M. Yusuff, Polyhedron, 29, 3014 (2010); https://doi.org/10.1016/j.poly.2010.08.016.
- H. Dugas and C. Penney, Bioorganic Chemistry, Springer: New York, pp. 435-448 (1981).
- J.D. Margerum and L.J. Miller, Photochromism, Interscience-Wiley: New York, pp. 569-570 (1971).
- W.J. Sawodny and M. Riederer, Angew. Chem. Int. Ed. Engl., 16, 859 (1977); https://doi.org/10.1002/anie.197708591.
- R. Manikandan, P. Viswanathamurthi and M. Muthukumar, J. Mol. Biomol. Spectrosc., 83, 297 (2011); https://doi.org/10.1016/j.saa.2011.08.033.
References
S. Kundu, A.K. Pramanik, A.S. Mondal and T.K. Mondal, J. Mol. Struct., 1116, 1 (2016); https://doi.org/10.1016/j.molstruc.2016.03.013.
A.A. Abdel Aziz, A.N.M. Salem, M.A. Sayed and M.M. Aboaly, J. Mol. Struct., 1010, 130 (2012); https://doi.org/10.1016/j.molstruc.2011.11.043.
Z.L. You, H.L. Zhu and W.S. Liu, Z. Anorg. Allg. Chem., 630, 1617 (2004); https://doi.org/10.1002/zaac.200400125.
A. Golcu, M. Tumer, H. Demirelli, R.A. Wheatley, Inorg. Chim. Acta, 358, 1785 (2005); https://doi.org/10.1016/j.ica.2004.11.026.
S.K. Tadavi, A.A. Yadav and R.S. Bendre, J. Mol. Struct., 1152, 223 (2018); https://doi.org/10.1016/j.molstruc.2017.09.112.
R.C. Maurya, P. Patel and S. Rajput, Inorg. Met., 33, 817 (2003); https://doi.org/10.1081/SIM-120021648.
U. Bohme and B. Gunther, Inorg. Chem. Commun., 10, 482 (2007); https://doi.org/10.1016/j.inoche.2007.01.008.
L.C. Felton and J.H. Brewer, Science, 105, 409 (1947); https://doi.org/10.1126/science.105.2729.409.
K. Naresh Kumar and R. Ramesh, Polyhedron, 24, 1885 (2005); https://doi.org/10.1016/j.poly.2005.05.020.
A.N. Kursunlu, E. Guler, F. Sevgi and B. Ozkalp, J. Mol. Struct., 1048, 476 (2013); https://doi.org/10.1016/j.molstruc.2013.06.017.
K.J. Kilpin, W. Henderson and B.K. Nicholson, Polyhedron, 26, 204 (2007); https://doi.org/10.1016/j.poly.2006.08.009.
K. Kumar, M. Kamboj, K. Jain and D.P. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 243 (2014); https://doi.org/10.1016/j.saa.2014.02.128.
S.A. Patil, V.H. Naik, A.D. Kulkarni and P.S. Badami, J. Sulfur Chem., 31, 109 (2010); https://doi.org/10.1080/17415991003668186.
A.D. Kulkarni, S.A. Patil and P.S. Badami, J. Sulfur Chem., 30, 145 (2009); https://doi.org/10.1080/17415990802663133.
S.K. Sridhar, S.N. Pandeya, J.P. Stables and A. Ramesh, Eur. J. Pharm. Sci., 16, 129 (2002); https://doi.org/10.1016/S0928-0987(02)00077-5.
S.N. Pandeya, P. Yogeeswari, D. Sriram, E. de Clercq, C. Pannecouque and M. Witvrouw, Chemotherapy, 45, 192 (1999); https://doi.org/10.1159/000007182.
D.P. Singh, V. Malik, K. Kumar, C. Sharma and K.R. Aneja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 76, 45 (2010); https://doi.org/10.1016/j.saa.2010.02.044.
I. Ahmad and A.Z. Beg, J. Ethnopharmacol., 74, 113 (2001); https://doi.org/10.1016/S0378-8741(00)00335-4.
M.V. Andrews, J. Shaffer and D.C. McCain, J. Inorg. Nucl. Chem., 33, 3945 (1971); https://doi.org/10.1016/0022-1902(71)80301-9.
R. Pfragner and R.I. Freshney, Culture of Human Tumor Cells, John Wiley & Sons (2004).
T.C. Birdsall, Altern. Med. Rev., 3, 271 (1998).
L.R. Rudnick, Lubricant Additives, Chemistry Applications, edn 2, CRC Press, Boca Raton (2009).
K. Buldurun, N. Turan, A. Savci and N. Çolak, J. Saudi Chem. Soc., 23, 205 (2019); https://doi.org/10.1016/j.jscs.2018.06.002.
H.S. Çalik, E. Ispir, S. Karabuga and M. Aslantas, J. Organomet. Chem., 801, 122 (2016); https://doi.org/10.1016/j.jorganchem.2015.10.028.
X. Dong, Y. Wang and Z. Qin, Acta Pharmacol. Sin., 30, 379 (2009); https://doi.org/10.1038/aps.2009.24.
P.A. Vigato and S. Tamburini, Coord. Chem. Rev., 248, 1717 (2004); https://doi.org/10.1016/j.cct.2003.09.003.
K. Shivakumar, P. Shashidhar, P. Vithal Reddy and M.B. Halli, J. Coord. Chem., 61, 2274 (2008); https://doi.org/10.1080/00958970801905239.
G.G. Mohamed, M.M. Omar and M.M. Hindy, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 62, 1140 (2005); https://doi.org/10.1016/j.saa.2005.03.031.
K. Nakamoto and S.J. McCarthy, Spectroscopy & Structure of Metal Chelate Compounds, John Wiley & Sons: USA (1968).
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam (1968).
B.N. Figgis, Introduction to Ligand Fields, edn 1, p. 263 (1966).
L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall: London, edn 3 (1975).
P.K. Shama and S.N. Dubey, Indian J. Chem., 33A, 1113 (1994).
T. Ahamad, N. Nishat and S. Parveen, J. Coord. Chem., 61, 1963 (2008); https://doi.org/10.1080/00958970701795698.
I.T. Ahmed, Transition Met. Chem., 32, 674 (2007); https://doi.org/10.1007/s11243-007-0232-4.
J.C. Rasmussen, H. Toftlund, A.N. Nivorzhkin, J. Bourassa and P.C. Ford, Inorg. Chim. Acta, 251, 291 (1996); https://doi.org/10.1016/S0020-1693(96)05282-6.
M.C. Cardia, M. Begala, A. Delogu, E. Maccioni and A. Plumitallo, Il Pharmaco, 55, 93 (2000); https://doi.org/10.1016/S0014-827X(99)00124-X.
N. Turan and K. Buldurun, Eur. J. Chem., 9, 22 (2018); https://doi.org/10.5155/eurjchem.9.1.22-29.1671.
M. Sebastian, V. Arun, P.P. Robinson, A.A. Varghese, R. Abraham, E. Suresh and K.K.M. Yusuff, Polyhedron, 29, 3014 (2010); https://doi.org/10.1016/j.poly.2010.08.016.
H. Dugas and C. Penney, Bioorganic Chemistry, Springer: New York, pp. 435-448 (1981).
J.D. Margerum and L.J. Miller, Photochromism, Interscience-Wiley: New York, pp. 569-570 (1971).
W.J. Sawodny and M. Riederer, Angew. Chem. Int. Ed. Engl., 16, 859 (1977); https://doi.org/10.1002/anie.197708591.
R. Manikandan, P. Viswanathamurthi and M. Muthukumar, J. Mol. Biomol. Spectrosc., 83, 297 (2011); https://doi.org/10.1016/j.saa.2011.08.033.