Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interaction Between Phenanthorline and Proteins: A Fluorescence Spectroscopy-Based Study
Corresponding Author(s) : Aiqing Feng
Asian Journal of Chemistry,
Vol. 26 No. 11 (2014): Vol 26 Issue 11
Abstract
Serum albumin with cardinal physiological functions is the most abundant protein in blood plasma. The concentration of serum albumin is an index of physical health and disease. Spectrophotometry was always used to determinate the concentration of serum albumin. In present study, a novel method for the determination of proteins was established based on the enhanced fluorescence intensity derived from the binding interaction of phenanthorline with proteins in the CH3COOH-CH3COONa buffer at pH 5.98. Underlying the excitation wavelength at 270 nm and the emission wavelength at 366 nm, the enhancement of fluorescence intensity was proportional to the concentration of proteins. The linear range for the calibration graph of human serum albumin was 20-160 μg/mL and the detection limit was 24.12 μg/mL. The recovery was 95.0-105.3 %. The method was sensitive, accurate, required fewer samples and was tolerant of many foreign substances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Sulkowska, J. Rownicka, B. Bojko and W. Sułkowski, J. Mol. Struct., 651-653, 133 (2003); doi:10.1016/S0022-2860(02)00642-7.
- J. Min, X. Meng-Xia, Z. Dong, L. Yuan, L. Xiao-Yu and C. Xing, J. Mol. Struct., 692, 71 (2004); doi:10.1016/j.molstruc.2004.01.003.
- Y. Liu, M. Xie, M. Jiang and Y.-D. Wang, Spectrochim. Acta A, 61, 2245 (2005); doi:10.1016/j.saa.2004.09.004.
- E. Rusinova, V. Tretyachenko-Ladokhina, O.E. Vele, D.F. Senear and J.B. Alexander Ross, Anal. Biochem., 308, 18 (2002); doi:10.1016/S0003-2697(02)00325-1.
- J. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic Publishers/Plenum Press, New York, edn. 2 (1999).
- H. Xiang, X. Chen and S. Li, Spectrosc. Spectr. Anal., 20, 566 (2000).
- B. Qiao, T. Huang and G. Sun, Chinese J. Spectrosc. Lab., 26, 1295 (2009).
- Huazhong Normal University, Analytical Chemistry, Higher Education Press, Beijing, edn. 3 (2004).
- Y. Wang, M. Duan and W. Wei, Modern Clinical Laboratory Science, People Medical Press, Beijing (2001).
- M.M. Brandford, Anal. Biochem., 72, 248 (1976); doi:10.1016/0003-2697(76)90527-3.
References
A. Sulkowska, J. Rownicka, B. Bojko and W. Sułkowski, J. Mol. Struct., 651-653, 133 (2003); doi:10.1016/S0022-2860(02)00642-7.
J. Min, X. Meng-Xia, Z. Dong, L. Yuan, L. Xiao-Yu and C. Xing, J. Mol. Struct., 692, 71 (2004); doi:10.1016/j.molstruc.2004.01.003.
Y. Liu, M. Xie, M. Jiang and Y.-D. Wang, Spectrochim. Acta A, 61, 2245 (2005); doi:10.1016/j.saa.2004.09.004.
E. Rusinova, V. Tretyachenko-Ladokhina, O.E. Vele, D.F. Senear and J.B. Alexander Ross, Anal. Biochem., 308, 18 (2002); doi:10.1016/S0003-2697(02)00325-1.
J. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic Publishers/Plenum Press, New York, edn. 2 (1999).
H. Xiang, X. Chen and S. Li, Spectrosc. Spectr. Anal., 20, 566 (2000).
B. Qiao, T. Huang and G. Sun, Chinese J. Spectrosc. Lab., 26, 1295 (2009).
Huazhong Normal University, Analytical Chemistry, Higher Education Press, Beijing, edn. 3 (2004).
Y. Wang, M. Duan and W. Wei, Modern Clinical Laboratory Science, People Medical Press, Beijing (2001).
M.M. Brandford, Anal. Biochem., 72, 248 (1976); doi:10.1016/0003-2697(76)90527-3.