Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Carbo-Chlorination of Silica: Thermodynamic Simulation and Experimental Study
Corresponding Author(s) : Meilong Hu
Asian Journal of Chemistry,
Vol. 26 No. 11 (2014): Vol 26 Issue 11
Abstract
Carbo-chlorination of silica represents an interesting route to prepare SiCl4, which is an important precursor used in the chemical industry and microelectronic industry. Chlorination of several silica-containing materials in the presence of carbon was studied at atmospheric pressure in an isothermal reactor at laboratory scale, with continuous and stable gas flow. The influencing factors such as temperature, C/SiO2 mole ratio and binder content in the mixture were studied. The experimental results showed that diatomite is the optimal material for carbo-chlorination to prepare SiCl4. The conversion ratio of silicon dioxide increases with C/SiO2 mole ratio, decreases with binder content increased in the mixture. SiO2 + 2Cl2 + 2C = SiCl4 + 2CO to be the dominant reaction above 800 °C according to the thermodynamic calculation. Based on the results, a probable procedures of the carbo-chlorination is proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Ariwahjoedi, Kh. Fuad and M. Ariefin, ECS Trans., 28, 16 (2008).
- J. Song, Z.-B. Cao, H.-P. Li, Z.-K. Jiang and Y.-B. Zhu, Chemistry and Adhesion, 33, 1 (2011).
- H.-B. Chen, Y.-L. Li and Y.-X. Yin, Chlor-Alkali Ind., 45, 4 (2009).
- Z. Luo, X. Cai, R.Y. Hong, L.S. Wang and W.G. Feng, Chem. Eng. J., 187, 357 (2012); doi:10.1016/j.cej.2012.01.098.
- Y.Z. Qiao, R.P. Ma, Z.K. Zhang, L.Y. Liang, Y. Zhang and X.J. Zhang, Inorg. Chem. Ind., 44, 5 (2012).
- X.L. Zhang and Y.L. Fan, J. Non-Cryst. Solids, 358, 337 (2012); doi:10.1016/j.jnoncrysol.2011.09.037.
- J.R. Heley, D. Jackson and P.F. James, J. Non-Cryst. Solids, 186, 30 (1995); doi:10.1016/0022-3093(95)00030-5.
- S. Peng, N. Feng, D. Hu, D. He, C.-W. Byun, Y.W. Lee and S.-K. Joo, Curr. Appl. Phys., 12, 1470 (2012); doi:10.1016/j.cap.2012.04.014.
- K. Yasuda, K. Saegusa and T.H. Okabe, Metallur. Mater. Trans. B, 42, 37 (2011); doi:10.1007/s11663-010-9440-y.
- Y.J. Zhang, Q. Zhang, N.L. Wang, Y.J. Yan, H.H. Zhou and J. Zhu, J. Crystal Growth, 226, 185 (2001); doi:10.1016/S0022-0248(01)01360-4.
- W.R. Barnes, Knutsford and H. Garton, Preparation of Silicon Tetrachloride, US Patent 3122492 (1964).
- G. Wiebke, G. Stohr, G. Kratel and J. Kral, Process for Preparing Silicon Tetrachloride from Silicon Carbide with Hydrogen Chloride, US Patent 3920799 (1975).
- T. Iwai, H. Mizuno and M. Miura, Production Process of Silicon Tetra-chloride, US Patent 4490344 (1984).
- E.S.M. Seo, M. Andreoli and R. Chiba, J. Mater. Process. Technol., 141, 351 (2003); doi:10.1016/S0924-0136(03)00287-5.
- J.M. Chen and F.W. Chang, Ind. Eng. Chem. Res., 30, 2241 (1991); doi:10.1021/ie00058a001.
- M. Andreoli, G.T. Luca and E.S.M. Seo, Mater. Lett., 44, 294 (2000); doi:10.1016/S0167-577X(00)00047-1.
- Z.Y. Zhang, Yunnan Chem. Technol., 4, (1994).
- J.Y. Lee, W.H. Lee, Y.-K. Park, H.Y. Kim, N.Y. Kang, K.B. Yoon, W.C. Choi and O-B. Yang, Sol. Energy Mater. Sol. Cells, 105, 142 (2012); doi:10.1016/j.solmat.2012.06.009.
- J.K. Yu, Inorg. Chem. Ind., 39, 12 (2007).
- F.L. Yang and V. Hlavacek, AIChE J., 45, 581 (1999); doi:10.1002/aic.690450315.
- G. Sheng, J. Hu and X. Wang, Appl. Radiat. Isot., 66, 1313 (2008); doi:10.1016/j.apradiso.2008.03.005.
- G.D. Sheng, H.P. Dong and Y.M. Li, J. Environ. Radioact., 113, 108 (2012); doi:10.1016/j.jenvrad.2012.05.011.
- P. Pookmanee, P. Thippraphan, P. Jansanthea and S. Phanichphant, Adv. Mater. Res., 506, 425 (2012); doi:10.4028/www.scientific.net/AMR.506.425.
- T.S. Ary, U.S. Department of the Interior Manuel Lujan, Jr., Secretary, Director U.S. Bureau of Mines CRYSTALLINE SILICA PRIMER, Crystalline Silica Primer/Staff, Branch of Industrial Minerals, United States (1992).
- J.M. Chen, F.W. Chang and C.Y. Chang, Ind. Eng. Chem. Res., 29, 778 (1990); doi:10.1021/ie00101a011.
- N.A. Saltykova, J. Min. Metall. Sect. B-Metall., 39, 201 (2003).
- M.H. Morcali, O. Yucel, A. Aydin and B. Derin, J. Min. Metall. Sect. B-Metall., 48, 173 (2012); doi:10.2298/JMMB111219031M.
- I. Ilić, K. Cerović, S. Stopić and Ž. Kamberović, J. Min. Metall. Sect. B-Metall., 39, 427 (2003).
- J.A. Gamboa and D.M. Pasquevich, Metallur. Mater. Trans. B, 31, 1439 (2000); doi:10.1007/s11663-000-0028-9.
- J.A. Gamboa, A.E. Bohé and D.M. Pasquevich, Thermochim. Acta, 334, 131 (1999); doi:10.1016/S0040-6031(99)00141-0.
- V.T. Amorebieta and A.J. Colussi, Int. J. Chemical Kinetics, 17, 849 (1985); doi:10.1002/kin.550170806.
References
B. Ariwahjoedi, Kh. Fuad and M. Ariefin, ECS Trans., 28, 16 (2008).
J. Song, Z.-B. Cao, H.-P. Li, Z.-K. Jiang and Y.-B. Zhu, Chemistry and Adhesion, 33, 1 (2011).
H.-B. Chen, Y.-L. Li and Y.-X. Yin, Chlor-Alkali Ind., 45, 4 (2009).
Z. Luo, X. Cai, R.Y. Hong, L.S. Wang and W.G. Feng, Chem. Eng. J., 187, 357 (2012); doi:10.1016/j.cej.2012.01.098.
Y.Z. Qiao, R.P. Ma, Z.K. Zhang, L.Y. Liang, Y. Zhang and X.J. Zhang, Inorg. Chem. Ind., 44, 5 (2012).
X.L. Zhang and Y.L. Fan, J. Non-Cryst. Solids, 358, 337 (2012); doi:10.1016/j.jnoncrysol.2011.09.037.
J.R. Heley, D. Jackson and P.F. James, J. Non-Cryst. Solids, 186, 30 (1995); doi:10.1016/0022-3093(95)00030-5.
S. Peng, N. Feng, D. Hu, D. He, C.-W. Byun, Y.W. Lee and S.-K. Joo, Curr. Appl. Phys., 12, 1470 (2012); doi:10.1016/j.cap.2012.04.014.
K. Yasuda, K. Saegusa and T.H. Okabe, Metallur. Mater. Trans. B, 42, 37 (2011); doi:10.1007/s11663-010-9440-y.
Y.J. Zhang, Q. Zhang, N.L. Wang, Y.J. Yan, H.H. Zhou and J. Zhu, J. Crystal Growth, 226, 185 (2001); doi:10.1016/S0022-0248(01)01360-4.
W.R. Barnes, Knutsford and H. Garton, Preparation of Silicon Tetrachloride, US Patent 3122492 (1964).
G. Wiebke, G. Stohr, G. Kratel and J. Kral, Process for Preparing Silicon Tetrachloride from Silicon Carbide with Hydrogen Chloride, US Patent 3920799 (1975).
T. Iwai, H. Mizuno and M. Miura, Production Process of Silicon Tetra-chloride, US Patent 4490344 (1984).
E.S.M. Seo, M. Andreoli and R. Chiba, J. Mater. Process. Technol., 141, 351 (2003); doi:10.1016/S0924-0136(03)00287-5.
J.M. Chen and F.W. Chang, Ind. Eng. Chem. Res., 30, 2241 (1991); doi:10.1021/ie00058a001.
M. Andreoli, G.T. Luca and E.S.M. Seo, Mater. Lett., 44, 294 (2000); doi:10.1016/S0167-577X(00)00047-1.
Z.Y. Zhang, Yunnan Chem. Technol., 4, (1994).
J.Y. Lee, W.H. Lee, Y.-K. Park, H.Y. Kim, N.Y. Kang, K.B. Yoon, W.C. Choi and O-B. Yang, Sol. Energy Mater. Sol. Cells, 105, 142 (2012); doi:10.1016/j.solmat.2012.06.009.
J.K. Yu, Inorg. Chem. Ind., 39, 12 (2007).
F.L. Yang and V. Hlavacek, AIChE J., 45, 581 (1999); doi:10.1002/aic.690450315.
G. Sheng, J. Hu and X. Wang, Appl. Radiat. Isot., 66, 1313 (2008); doi:10.1016/j.apradiso.2008.03.005.
G.D. Sheng, H.P. Dong and Y.M. Li, J. Environ. Radioact., 113, 108 (2012); doi:10.1016/j.jenvrad.2012.05.011.
P. Pookmanee, P. Thippraphan, P. Jansanthea and S. Phanichphant, Adv. Mater. Res., 506, 425 (2012); doi:10.4028/www.scientific.net/AMR.506.425.
T.S. Ary, U.S. Department of the Interior Manuel Lujan, Jr., Secretary, Director U.S. Bureau of Mines CRYSTALLINE SILICA PRIMER, Crystalline Silica Primer/Staff, Branch of Industrial Minerals, United States (1992).
J.M. Chen, F.W. Chang and C.Y. Chang, Ind. Eng. Chem. Res., 29, 778 (1990); doi:10.1021/ie00101a011.
N.A. Saltykova, J. Min. Metall. Sect. B-Metall., 39, 201 (2003).
M.H. Morcali, O. Yucel, A. Aydin and B. Derin, J. Min. Metall. Sect. B-Metall., 48, 173 (2012); doi:10.2298/JMMB111219031M.
I. Ilić, K. Cerović, S. Stopić and Ž. Kamberović, J. Min. Metall. Sect. B-Metall., 39, 427 (2003).
J.A. Gamboa and D.M. Pasquevich, Metallur. Mater. Trans. B, 31, 1439 (2000); doi:10.1007/s11663-000-0028-9.
J.A. Gamboa, A.E. Bohé and D.M. Pasquevich, Thermochim. Acta, 334, 131 (1999); doi:10.1016/S0040-6031(99)00141-0.
V.T. Amorebieta and A.J. Colussi, Int. J. Chemical Kinetics, 17, 849 (1985); doi:10.1002/kin.550170806.