Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antimicrobial Activity of Cu(II) and Fe(III) with Pyridine Complexes as Ligands Contrary to Clinical Strains of Bacteria and Fungi Species
Corresponding Author(s) : Mahbubur Rahman
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
In this study, green coloured Cu(II) and red coloured Fe(III) complexes of pyridine were prepared and the elemental characterization confirmed their composition. The pyridine complexes of Cu(II) and Fe(III) were found very interesting and attractive as potential candidates with antimicrobial activity. Along with this, melting point, molar conductivity measurement, magnetic moment determination, electronic and FTIR spectroscopy were also measured to characterize the prepared complexes. Pyridine acts as monodentate which resulted in formation of square planar and octahedral structure of Cu(II) and Fe(III) complexes, respectively with the nitrogen atom pyridine ring by coordination bond. For antimicrobial activity studies Alternaria alternata, Bacillus cerelus, Botrgodiplodia theobromal, Colletotrichums corcolei, Escherichia coli, Fusarium equiseti, Macrophomina phaseolina, Salmonell typhi and Shigella dysenteriae were used. The prepared complexes showed inhibition against mycelial growth. Although the complexes showed satisfactory inhibition against the tested bacteria and fungi species, both of the complexes were comparatively better against bacteria than fungi compared to ligand.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Raman and S. Ravichandran, Polish J. Chem. Polish., 78, 11 (2004).
- Y. Zhang, IOP Conf. Series: Earth Environ. Sci., 100, 012020 (2017); https://doi.org/10.1088/1755-1315/100/1/012020.
- A. Lalehzari, J. Desper and C.J. Levy, Chem. Inorg., 47, 1120 (2008); https://doi.org/10.1021/ic702015u.
- S. Shit, S. Sen, S. Mitra and D.L. Hughes, Transition Met. Chem., 34, 269 (2009); https://doi.org/10.1007/s11243-009-9189-9.
- B. Xu, W. Jiang, J. Zhang, Y. Tang and J. Li, Transition Met. Chem., 34, 293 (2009); https://doi.org/10.1007/s11243-009-9193-0.
- G.B. Bagihalli, P.G. Avaji, S.A. Patil and P.S. Badami, J. Eur. Chem. Med., 43, 2639 (2008); https://doi.org/10.1016/j.ejmech.2008.02.013.
- Z.H. Chohan, M. Arif, Z. Shafiq, M. Yaqub and C.T. Supuran, J. Chem. Enzyme Inhib Med., 21, 95 (2006); https://doi.org/10.1080/14756360500456806.
- Z.H. Chohan, M. Arif and A.J. Rashid, J. Chem. Enzyme Inhib Med., 23, 785 (2008); https://doi.org/10.1080/14756360701450145.
- O.M. Adelaide, O.O. Abidemi and A.D. Olubunmi, J. Chem. Pharm. Res., 5, 69 (2013).
- Y.M. Shah, T. Matsubara, S. Ito, S.H. Yim and F.J. Gonzalez, Cell Metab., 9, 152 (2009); https://doi.org/10.1016/j.cmet.2008.12.012.
- M. Belicchi Ferrari, F. Bisceglie, G. Gasparri Fava, G. Pelosi, P. Tarasconi, R. Albertini and S. Pinelli, J. Inorg. Biochem., 89, 36 (2002); https://doi.org/10.1016/S0162-0134(01)00371-3.
- M. Belicchi Ferrari, F. Bisceglie, G. Pelosi, P. Tarasconi, R. Albertini, A. Bonati, P. Lunghi and S. Pinelli, J. Inorg. Biochem., 83, 169 (2001); https://doi.org/10.1016/S0162-0134(00)00181-1.
- M.C. Rodrìguez-Argüelles, M.B. Ferrari, F. Bisceglie, C. Pelizzi, G. Pelosi, S. Pinelli and M. Sassi, J. Inorg. Biochem., 98, 313 (2004); https://doi.org/10.1016/j.jinorgbio.2003.10.006.
- M. Belicchi-Ferrari, F. Bisceglie, A. Buschini, S. Franzoni, G. Pelosi, S. Pinelli, P. Tarasconi and M. Tavone, J. Inorg. Biochem., 104, 199 (2010); https://doi.org/10.1016/j.jinorgbio.2009.11.002.
- J.G. Liehr and J. Jones, Chem. Curr Med., 8, 839 (2001); https://doi.org/10.2174/0929867013372931.
- D.A. Baldwin and T.J. Egan, J. South Afr. Sci., 38, 22 (1987).
- N.D. Chasteen, Trends Biochem. Sci., 8, 272 (1983); https://doi.org/10.1016/0968-0004(83)90078-6.
- E. Rossi, Clin. Biochem. Rev., 26, 47 (2005).
- D.Y. Wu, M. Hayashi, C.H. Chang, K.K. Liang and S.H. Lin, J. Chem. Phys., 118, 4073 (2003); https://doi.org/10.1063/1.1541627.
- C. Guo, Z. Cao and Q. Zhang, Chem. Phys. Lett., 386, 448 (2004); https://doi.org/10.1016/j.cplett.2004.01.101.
- H.C. Hsu, F.W. Lin, C.C. Lai, P.H. Su and C.S. Yeh, J. Chem. New, 26, 481 (2002); https://doi.org/10.1039/b109107g.
- W. Guo, H. Liu and S. Yang, J. Int. Mass Spectrom., 226, 291 (2003); https://doi.org/10.1016/S1387-3806(03)00020-4.
- A. Chaubey and S.N. Pandeya, Asian J. Pharm. Clin. Res., 4, 5 (2011).
- K.C. Nicolaou, R. Scarpelli, B. Bollbuck, B. Werschkun, M.M.A. Pereira, M. Wartmann, K.H. Altmann, D. Zaharevitz, R. Gussio and P. Giannakakou, Chem. Biol., 7, 593 (2000); https://doi.org/10.1016/S1074-5521(00)00006-5.
- J.K. Son, L.X. Zhao, A. Basnet, P. Thapa, R. Karki, Y. Na, Y. Jahng, T.C. Jeong, B.S. Jeong, C.S. Lee and E.S. Lee, J. Eur. Chem. Med., 43, 675 (2008); https://doi.org/10.1016/j.ejmech.2007.05.002.
- I.O. Zhuravel’, S.M. Kovalenko, A.V. Ivachtchenko, K.V. Balakin and V.V. Kazmirchuk, Chem. Bioorg. Medi. Lett., 15, 5483 (2005); https://doi.org/10.1016/j.bmcl.2005.08.081.
- T. Suksrichavalit, S. Prachayasittikul, C. Nantasenamat, C. IsarankuraNa-Ayudhya and V. Prachayasittikul, J. Eur. Chem. Med., 44, 3259 (2009); https://doi.org/10.1016/j.ejmech.2009.03.033.
- A. Özdemir, G. Turan-Zitouni, Z. Asim Kaplancikli, G. Iscan, S. Khan and F. Demirci, J. Eur. Chem. Med., 45, 2080 (2010); https://doi.org/10.1016/j.ejmech.2009.12.023.
- A.M. Rolim Bernardino, L.C. da Silva Pinheiro, C.R. Rodrigues, N.I. Loureiro, H.C. Castro, A. Lanfredi-Rangel, J. Sabatini-Lopes, J.C. Borges, J.M. Carvalho, G.A. Romeiro, V.F. Ferreira, I.C.P.P. Frugulhetti and M.A. Vannier-Santos, Bioorg. Med. Chem., 14, 5765 (2006); https://doi.org/10.1016/j.bmc.2006.03.013.
- A.M. Attla, H.A. Mansour, A.A. Almehdi and M.M. Abbasi, Nucleosides Nucleotides, 18, 2301 (1999); https://doi.org/10.1080/07328319908044882.
- R.H. Bahekar, M.R. Jain, P.A. Jadav, V.M. Prajapati, D.N. Patel, A.A. Gupta, A. Sharma, R. Tom, D. Bandyopadhya, H. Modi and P.R. Patel, Chem. Bioorg. Med., 15, 6782 (2007); https://doi.org/10.1016/j.bmc.2007.08.005.
- S. Dutta, M.Sc. Thesis, Department of Chemistry, Calcutta University, Kolkata, India (2002).
- S.K. Hazari, T.G. Roy, B.K. Dey, H.A. Miah, S. Dutta and E.R.T. Tiekink, Z. Kristallogr., New Cryst. Struct., 216, 441 (2001); https://doi.org/10.1524/ncrs.2001.216.14.463.
- H.A. Miah, Ph.D. Thesis, Department of Chemistry, Calcutta University, Kolkata, India (2003)
- J.A. Obaleye, C.L. Orjiekwe and O. Famurewa, J. Sci. I.R. of Iran, 5, 154 (1994).
References
N. Raman and S. Ravichandran, Polish J. Chem. Polish., 78, 11 (2004).
Y. Zhang, IOP Conf. Series: Earth Environ. Sci., 100, 012020 (2017); https://doi.org/10.1088/1755-1315/100/1/012020.
A. Lalehzari, J. Desper and C.J. Levy, Chem. Inorg., 47, 1120 (2008); https://doi.org/10.1021/ic702015u.
S. Shit, S. Sen, S. Mitra and D.L. Hughes, Transition Met. Chem., 34, 269 (2009); https://doi.org/10.1007/s11243-009-9189-9.
B. Xu, W. Jiang, J. Zhang, Y. Tang and J. Li, Transition Met. Chem., 34, 293 (2009); https://doi.org/10.1007/s11243-009-9193-0.
G.B. Bagihalli, P.G. Avaji, S.A. Patil and P.S. Badami, J. Eur. Chem. Med., 43, 2639 (2008); https://doi.org/10.1016/j.ejmech.2008.02.013.
Z.H. Chohan, M. Arif, Z. Shafiq, M. Yaqub and C.T. Supuran, J. Chem. Enzyme Inhib Med., 21, 95 (2006); https://doi.org/10.1080/14756360500456806.
Z.H. Chohan, M. Arif and A.J. Rashid, J. Chem. Enzyme Inhib Med., 23, 785 (2008); https://doi.org/10.1080/14756360701450145.
O.M. Adelaide, O.O. Abidemi and A.D. Olubunmi, J. Chem. Pharm. Res., 5, 69 (2013).
Y.M. Shah, T. Matsubara, S. Ito, S.H. Yim and F.J. Gonzalez, Cell Metab., 9, 152 (2009); https://doi.org/10.1016/j.cmet.2008.12.012.
M. Belicchi Ferrari, F. Bisceglie, G. Gasparri Fava, G. Pelosi, P. Tarasconi, R. Albertini and S. Pinelli, J. Inorg. Biochem., 89, 36 (2002); https://doi.org/10.1016/S0162-0134(01)00371-3.
M. Belicchi Ferrari, F. Bisceglie, G. Pelosi, P. Tarasconi, R. Albertini, A. Bonati, P. Lunghi and S. Pinelli, J. Inorg. Biochem., 83, 169 (2001); https://doi.org/10.1016/S0162-0134(00)00181-1.
M.C. Rodrìguez-Argüelles, M.B. Ferrari, F. Bisceglie, C. Pelizzi, G. Pelosi, S. Pinelli and M. Sassi, J. Inorg. Biochem., 98, 313 (2004); https://doi.org/10.1016/j.jinorgbio.2003.10.006.
M. Belicchi-Ferrari, F. Bisceglie, A. Buschini, S. Franzoni, G. Pelosi, S. Pinelli, P. Tarasconi and M. Tavone, J. Inorg. Biochem., 104, 199 (2010); https://doi.org/10.1016/j.jinorgbio.2009.11.002.
J.G. Liehr and J. Jones, Chem. Curr Med., 8, 839 (2001); https://doi.org/10.2174/0929867013372931.
D.A. Baldwin and T.J. Egan, J. South Afr. Sci., 38, 22 (1987).
N.D. Chasteen, Trends Biochem. Sci., 8, 272 (1983); https://doi.org/10.1016/0968-0004(83)90078-6.
E. Rossi, Clin. Biochem. Rev., 26, 47 (2005).
D.Y. Wu, M. Hayashi, C.H. Chang, K.K. Liang and S.H. Lin, J. Chem. Phys., 118, 4073 (2003); https://doi.org/10.1063/1.1541627.
C. Guo, Z. Cao and Q. Zhang, Chem. Phys. Lett., 386, 448 (2004); https://doi.org/10.1016/j.cplett.2004.01.101.
H.C. Hsu, F.W. Lin, C.C. Lai, P.H. Su and C.S. Yeh, J. Chem. New, 26, 481 (2002); https://doi.org/10.1039/b109107g.
W. Guo, H. Liu and S. Yang, J. Int. Mass Spectrom., 226, 291 (2003); https://doi.org/10.1016/S1387-3806(03)00020-4.
A. Chaubey and S.N. Pandeya, Asian J. Pharm. Clin. Res., 4, 5 (2011).
K.C. Nicolaou, R. Scarpelli, B. Bollbuck, B. Werschkun, M.M.A. Pereira, M. Wartmann, K.H. Altmann, D. Zaharevitz, R. Gussio and P. Giannakakou, Chem. Biol., 7, 593 (2000); https://doi.org/10.1016/S1074-5521(00)00006-5.
J.K. Son, L.X. Zhao, A. Basnet, P. Thapa, R. Karki, Y. Na, Y. Jahng, T.C. Jeong, B.S. Jeong, C.S. Lee and E.S. Lee, J. Eur. Chem. Med., 43, 675 (2008); https://doi.org/10.1016/j.ejmech.2007.05.002.
I.O. Zhuravel’, S.M. Kovalenko, A.V. Ivachtchenko, K.V. Balakin and V.V. Kazmirchuk, Chem. Bioorg. Medi. Lett., 15, 5483 (2005); https://doi.org/10.1016/j.bmcl.2005.08.081.
T. Suksrichavalit, S. Prachayasittikul, C. Nantasenamat, C. IsarankuraNa-Ayudhya and V. Prachayasittikul, J. Eur. Chem. Med., 44, 3259 (2009); https://doi.org/10.1016/j.ejmech.2009.03.033.
A. Özdemir, G. Turan-Zitouni, Z. Asim Kaplancikli, G. Iscan, S. Khan and F. Demirci, J. Eur. Chem. Med., 45, 2080 (2010); https://doi.org/10.1016/j.ejmech.2009.12.023.
A.M. Rolim Bernardino, L.C. da Silva Pinheiro, C.R. Rodrigues, N.I. Loureiro, H.C. Castro, A. Lanfredi-Rangel, J. Sabatini-Lopes, J.C. Borges, J.M. Carvalho, G.A. Romeiro, V.F. Ferreira, I.C.P.P. Frugulhetti and M.A. Vannier-Santos, Bioorg. Med. Chem., 14, 5765 (2006); https://doi.org/10.1016/j.bmc.2006.03.013.
A.M. Attla, H.A. Mansour, A.A. Almehdi and M.M. Abbasi, Nucleosides Nucleotides, 18, 2301 (1999); https://doi.org/10.1080/07328319908044882.
R.H. Bahekar, M.R. Jain, P.A. Jadav, V.M. Prajapati, D.N. Patel, A.A. Gupta, A. Sharma, R. Tom, D. Bandyopadhya, H. Modi and P.R. Patel, Chem. Bioorg. Med., 15, 6782 (2007); https://doi.org/10.1016/j.bmc.2007.08.005.
S. Dutta, M.Sc. Thesis, Department of Chemistry, Calcutta University, Kolkata, India (2002).
S.K. Hazari, T.G. Roy, B.K. Dey, H.A. Miah, S. Dutta and E.R.T. Tiekink, Z. Kristallogr., New Cryst. Struct., 216, 441 (2001); https://doi.org/10.1524/ncrs.2001.216.14.463.
H.A. Miah, Ph.D. Thesis, Department of Chemistry, Calcutta University, Kolkata, India (2003)
J.A. Obaleye, C.L. Orjiekwe and O. Famurewa, J. Sci. I.R. of Iran, 5, 154 (1994).