Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Thermal Performance of Poly(cyclotriphosphazene-acetylferrocene) Derivative
Corresponding Author(s) : Zhengping Zhao
Asian Journal of Chemistry,
Vol. 26 No. 12 (2014): Vol 26 Issue 12
Abstract
Amino nucleophilic reagents were prepared by using acetylferrocene and diamines and then the iron-phosphazene derivative was first synthesized by the nucleophilic substitution reaction of hexachlorocyclotriphosphazene and the amino nucleophilic reagent. FT-IR curve proved that the aim product was synthesized and the chlorine atom of iron-phosphazene derivative did not completely replaced. The thermal performance of the iron-phosphazene derivative was examined by TGA. This suggests that the iron-phosphazene derivative began to degrade at 200 °C and still has 25 % residue at 700 °C. The residues morphology of the iron-phosphazene derivative was also examined. The surface of residues was smooth, fibrous arrangement and has a certain orientation structure. EDS confirmed that the main components of the high-temperature calcined residues were C, P and Fe.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Endo, T. Iijima, Y. Kaneko, Y. Miyakawa and M. Nishimura, Wear, 190, 219 (1995); doi:10.1016/0043-1648(95)06765-5.
- C.E. Fanning and T.A. Blanchet, Wear, 265, 1076 (2008); doi:10.1016/j.wear.2008.02.009.
- Y. Ye, J. Chen and H. Zhou, Surf. Coat. Technol., 203, 1121 (2009); doi:10.1016/j.surfcoat.2008.10.001.
- T. Polcar, N. Parreira and R. Novak, Surf. Coat. Technol., 201, 5228 (2007); doi:10.1016/j.surfcoat.2006.07.121.
- D.W. Johnson, S. Morrow, N.H. Forster and C.S. Saba, Chem. Mater., 14, 3767 (2002); doi:10.1021/cm010921o.
- K.M. Abraham, M. Alamgir and S.J. Perrotti, J. Electroanal. Soc., 135, 535 (1988); doi:10.1149/1.2095651.
- H.R. Allcock, W.R. Laredo and R.V. Morford, Solid State Ion., 139, 27 (2001); doi:10.1016/S0167-2738(00)00807-9.
- H.R. Allcock, E.S. Powell, A.E. Maher, R.L. Prange and C.R. de Denus, Macromolecules, 37, 3635 (2004); doi:10.1021/ma030554x.
- Z.P. Zhao, Q. Guo, S.G. Zhang, J.L. Sun and Z.J. Nie, Asian J. Chem., 23, 5407 (2011).
- P. Selig, E. Herdtweck and T. Bach, Chem. Eur. J., 15, 3509 (2009); doi:10.1002/chem.200802383.
- K. Muralidharan and A.J. Elias, Inorg. Chem., 42, 7535 (2003); doi:10.1021/ic034712c.
References
T. Endo, T. Iijima, Y. Kaneko, Y. Miyakawa and M. Nishimura, Wear, 190, 219 (1995); doi:10.1016/0043-1648(95)06765-5.
C.E. Fanning and T.A. Blanchet, Wear, 265, 1076 (2008); doi:10.1016/j.wear.2008.02.009.
Y. Ye, J. Chen and H. Zhou, Surf. Coat. Technol., 203, 1121 (2009); doi:10.1016/j.surfcoat.2008.10.001.
T. Polcar, N. Parreira and R. Novak, Surf. Coat. Technol., 201, 5228 (2007); doi:10.1016/j.surfcoat.2006.07.121.
D.W. Johnson, S. Morrow, N.H. Forster and C.S. Saba, Chem. Mater., 14, 3767 (2002); doi:10.1021/cm010921o.
K.M. Abraham, M. Alamgir and S.J. Perrotti, J. Electroanal. Soc., 135, 535 (1988); doi:10.1149/1.2095651.
H.R. Allcock, W.R. Laredo and R.V. Morford, Solid State Ion., 139, 27 (2001); doi:10.1016/S0167-2738(00)00807-9.
H.R. Allcock, E.S. Powell, A.E. Maher, R.L. Prange and C.R. de Denus, Macromolecules, 37, 3635 (2004); doi:10.1021/ma030554x.
Z.P. Zhao, Q. Guo, S.G. Zhang, J.L. Sun and Z.J. Nie, Asian J. Chem., 23, 5407 (2011).
P. Selig, E. Herdtweck and T. Bach, Chem. Eur. J., 15, 3509 (2009); doi:10.1002/chem.200802383.
K. Muralidharan and A.J. Elias, Inorg. Chem., 42, 7535 (2003); doi:10.1021/ic034712c.