Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Doped Indium Tin Oxide on Bonding and Morphology of Monomer Cholesteryl Acrylate
Corresponding Author(s) : S. Iwan
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Monomer cholesteryl acrylate was doped by indium tin oxide (ITO) which succeeded in becoming composites in photopolymerization process using UV curing method having various polymerization time (15, 20, 25, 30 and 35 min) at 60-70 °C. The goal of this study is to know the effect of polymerization time to characterize the conductivity properties of composite cholesteryl acrylate-ITO. All the spectra confirmed the peaks at 600-550 cm-1 which attributed the doping of ITO in the composite cholesteryl acrylate-ITO. The XRD patterns of polymer cholesteryl acrylate-ITO has nematic chiral phase at 2θ = 15-20°. Some of the peaks are appeared at 15.2734° and 16.7266°, while other peaks of indium tin oxide appeared at 30°, 50° and 60°. The surface morphology of polymer cholesteryl acrylate-ITO showed the existence of sphere. The value conductivity of polymer cholesteryl acrylate-ITO is found to be 1.8390 × 10-10 S/m.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Imae, Y. Nakamura, K. Komaguchi, Y. Ooyama, J. Ohshita and Y. Harima, Sci. Technol. Adv. Mater., 13, 045005 (2012); https://doi.org/10.1088/1468-6996/13/4/045005.
- D. Pedrazzoli, A. Dorigato, T. Conti, L. Vanzetti, M. Bersani and A. Pegoretti, Express Polym. Lett., 9, 709 (2015); https://doi.org/10.3144/expresspolymlett.2015.66.
- S. Lai, Y. Wu, J. Wang, W. Wu and W. Gu, Optical Mater. Exp., 8, 1585 (2018); https://doi.org/10.1364/OME.8.001585.
- C.Y. Ho, F.H. Lin, Y.T. Tao and J.Y. Lee, Sci. Technol. Adv. Mater., 12, 065002 (2011); https://doi.org/10.1088/1468-6996/12/6/065002.
- J.W. Park, G.S. Shim, J.G. Lee, S.W. Jang, H.J. Kim and J.N. Choi, Materials, 11, 509 (2018); https://doi.org/10.3390/ma11040509.
- F. Liu, Y. Wang, X. Xue and H. Yang, Polymer (Korea), 40, 390 (2016); https://doi.org/10.7317/pk.2016.40.3.390.
- S.A. Mani, S.U. Hadkar, P.J. Jessy, S. Lal, P. Keller, S. Khosla, N. Sood and P. Sarawade, J. Inf. Disp., 17, 169 (2016); https://doi.org/10.1080/15980316.2016.1241832.
- Q. An, Z. Ei, P. In, Z. Heng, M. Ingrui, Z. Uang and W. Lin, Optical Mater. Exp., 8, 228 (2018); https://doi.org/10.1364/OME.8.001536.
- K. Ali, S.A. Khan and M.Z.M. Jafri, Nanoscale Res. Lett., 9, 175 (2014); https://doi.org/10.1186/1556-276X-9-175.
- H. Xu, O. Trushkevych, N. Collings and W.A. Crossland, Mol. Cryst. Liq. Cryst., 502, 235 (2009); https://doi.org/10.1080/15421400902817346.
- R.-Y. Yang, C.-J. Chu, Y.-M. Peng and H.-J. Chueng, Adv. Mater. Sci. Eng., 2012, Article ID 741561 (2012); https://doi.org/10.1155/2012/741561.
- N.-W. Pu, W.-S. Liu, H.-M. Cheng, H.-C. Hu, W.-T. Hsieh, H.-W. Yu and S.-C. Liang, Materials, 8, 6471 (2015); https://doi.org/10.3390/ma8095316.
- C. Hengst, S. Menzel, G. Rane, V. Smirnov, K. Wilken, B. Leszczynska, D. Fischer and N. Prager, Materials, 10, 245 (2017); https://doi.org/10.3390/ma10030245.
- D. Choi, S.J. Hong and Y. Son, Materials, 7, 7662 (2014); https://doi.org/10.3390/ma7127662.
- A. Abderrahmen, F.F. Romdhane, H.B. Ouada and A. Gharbi, Sci. Technol. Adv. Mater., 9, 025001 (2008); https://doi.org/10.1088/1468-6996/9/2/025001.
- M. Al-Tweissi, I.O. Ayish, Y. Al-Ramadin, A.M. Zihlif, Z.M. Elimat and R.S. Al-Faleh, J. Nano- Electron. Phys., 10, 02006 (2018).
- H. Chen, M. Hu, F. Peng, J. Li, Z. An and S.-T. Wu, Opt. Mater. Express, 5, 655 (2015); https://doi.org/10.1364/OME.5.000655.
References
I. Imae, Y. Nakamura, K. Komaguchi, Y. Ooyama, J. Ohshita and Y. Harima, Sci. Technol. Adv. Mater., 13, 045005 (2012); https://doi.org/10.1088/1468-6996/13/4/045005.
D. Pedrazzoli, A. Dorigato, T. Conti, L. Vanzetti, M. Bersani and A. Pegoretti, Express Polym. Lett., 9, 709 (2015); https://doi.org/10.3144/expresspolymlett.2015.66.
S. Lai, Y. Wu, J. Wang, W. Wu and W. Gu, Optical Mater. Exp., 8, 1585 (2018); https://doi.org/10.1364/OME.8.001585.
C.Y. Ho, F.H. Lin, Y.T. Tao and J.Y. Lee, Sci. Technol. Adv. Mater., 12, 065002 (2011); https://doi.org/10.1088/1468-6996/12/6/065002.
J.W. Park, G.S. Shim, J.G. Lee, S.W. Jang, H.J. Kim and J.N. Choi, Materials, 11, 509 (2018); https://doi.org/10.3390/ma11040509.
F. Liu, Y. Wang, X. Xue and H. Yang, Polymer (Korea), 40, 390 (2016); https://doi.org/10.7317/pk.2016.40.3.390.
S.A. Mani, S.U. Hadkar, P.J. Jessy, S. Lal, P. Keller, S. Khosla, N. Sood and P. Sarawade, J. Inf. Disp., 17, 169 (2016); https://doi.org/10.1080/15980316.2016.1241832.
Q. An, Z. Ei, P. In, Z. Heng, M. Ingrui, Z. Uang and W. Lin, Optical Mater. Exp., 8, 228 (2018); https://doi.org/10.1364/OME.8.001536.
K. Ali, S.A. Khan and M.Z.M. Jafri, Nanoscale Res. Lett., 9, 175 (2014); https://doi.org/10.1186/1556-276X-9-175.
H. Xu, O. Trushkevych, N. Collings and W.A. Crossland, Mol. Cryst. Liq. Cryst., 502, 235 (2009); https://doi.org/10.1080/15421400902817346.
R.-Y. Yang, C.-J. Chu, Y.-M. Peng and H.-J. Chueng, Adv. Mater. Sci. Eng., 2012, Article ID 741561 (2012); https://doi.org/10.1155/2012/741561.
N.-W. Pu, W.-S. Liu, H.-M. Cheng, H.-C. Hu, W.-T. Hsieh, H.-W. Yu and S.-C. Liang, Materials, 8, 6471 (2015); https://doi.org/10.3390/ma8095316.
C. Hengst, S. Menzel, G. Rane, V. Smirnov, K. Wilken, B. Leszczynska, D. Fischer and N. Prager, Materials, 10, 245 (2017); https://doi.org/10.3390/ma10030245.
D. Choi, S.J. Hong and Y. Son, Materials, 7, 7662 (2014); https://doi.org/10.3390/ma7127662.
A. Abderrahmen, F.F. Romdhane, H.B. Ouada and A. Gharbi, Sci. Technol. Adv. Mater., 9, 025001 (2008); https://doi.org/10.1088/1468-6996/9/2/025001.
M. Al-Tweissi, I.O. Ayish, Y. Al-Ramadin, A.M. Zihlif, Z.M. Elimat and R.S. Al-Faleh, J. Nano- Electron. Phys., 10, 02006 (2018).
H. Chen, M. Hu, F. Peng, J. Li, Z. An and S.-T. Wu, Opt. Mater. Express, 5, 655 (2015); https://doi.org/10.1364/OME.5.000655.