Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Performance Enhancement Architecture for Radiation Dose Computation in Integrated Decommission Process Assessment System
Corresponding Author(s) : Hae-Sang Song
Asian Journal of Chemistry,
Vol. 26 No. 13 (2014): Vol 26 Issue 13
Abstract
This paper proposes a computing architecture suitable for an integrated decommission process assessment system under development by Korea Atomic Energy Research Institute, which provides innovative simulation tools for the dismantling process of main components of nuclear power plants, including features of planning and simulation of dismantling processes to assess the task feasibility, cost estimation of processes, radiation dose estimation of workers. Among those, it is most safety-critical and time consuming to conduct radiation dose estimation of chemically contaminated and highly radioactive components during nuclear facility decommissioning, for usually it uses Monte Carlo simulation methods in order to get accurate results scarifying computing costs. The estimation time further increases as we need to iterate such time-consuming simulation runs for a lot of dismantling scenarios to get the total exposure of moving workers and even changing radioactive sources. Thus, to cope with this situation, we propose a hybrid cluster computing architecture exploiting commodity hardware for cost efficiency and maintainability. We also propose software architecture to effectively enhance the performance of the assessment in both real-time mode and batch mode with fault-tolerance. We implemented a pilot 8-node cluster as proposed and with experiments for a few cases we illustrated that the proposed architecture has the extensibility for the integrated decommission process assessment system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.S. Song, D. Hyun, G.H. Kim, B.S. Choi and J. Moon, Asian J. Chem., 25, 7041 (2013); doi:10.14233/ajchem.2013.14.
- N. MetropolisS.M. Ulam. N. Metropolis and S. Ulam, J. Am. Stat. Assoc., 44, 335 (1949); doi:10.1080/01621459.1949.10483310.
- J.T. Goorley, M.R. James, T.E. Booth, F.B. Brown, J.S. Bull, L.J. Cox, J.W. Durkee Jr, J.S. Elson, M.L. Fensin and R.A. Forster, Initial MCNP6 Release Overview-MCNP6 version 1.0 Technical Report No. LA-UR-13-22934, Los Alamos National Laboratory (LANL) (2013).
- S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida and D. Zschiesche, Nucl. Instrum. Methods Phys. Res. A, 506, 250 (2003); doi:10.1016/S0168-9002(03)01368-8.
- B. Yang, K. Lu, J. Liu, X.P. Wang and C.Y. Gong, GPU Accelerated Monte Carlo Simulation of Deep Penetration Neutron Transport, 2nd IEEE International Conference on Parallel Distributed and Grid Computing (PDGC), Dec. 2012, Solan, pp. 899-904 (2012).
- G. Cooperman, V.H. Nguyen and I. Malioutov, Parallelization of Geant4 Using TOP-C and Marshalgen, Fifth IEEE International Symposium on Network Computing and Applications, July 2006, Cambridge, MA, pp. 48-55 (2006).
- http://hadoop.apache.org/docs/r1.1.2/streaming.html, retrieved in 2013.
References
H.S. Song, D. Hyun, G.H. Kim, B.S. Choi and J. Moon, Asian J. Chem., 25, 7041 (2013); doi:10.14233/ajchem.2013.14.
N. MetropolisS.M. Ulam. N. Metropolis and S. Ulam, J. Am. Stat. Assoc., 44, 335 (1949); doi:10.1080/01621459.1949.10483310.
J.T. Goorley, M.R. James, T.E. Booth, F.B. Brown, J.S. Bull, L.J. Cox, J.W. Durkee Jr, J.S. Elson, M.L. Fensin and R.A. Forster, Initial MCNP6 Release Overview-MCNP6 version 1.0 Technical Report No. LA-UR-13-22934, Los Alamos National Laboratory (LANL) (2013).
S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida and D. Zschiesche, Nucl. Instrum. Methods Phys. Res. A, 506, 250 (2003); doi:10.1016/S0168-9002(03)01368-8.
B. Yang, K. Lu, J. Liu, X.P. Wang and C.Y. Gong, GPU Accelerated Monte Carlo Simulation of Deep Penetration Neutron Transport, 2nd IEEE International Conference on Parallel Distributed and Grid Computing (PDGC), Dec. 2012, Solan, pp. 899-904 (2012).
G. Cooperman, V.H. Nguyen and I. Malioutov, Parallelization of Geant4 Using TOP-C and Marshalgen, Fifth IEEE International Symposium on Network Computing and Applications, July 2006, Cambridge, MA, pp. 48-55 (2006).
http://hadoop.apache.org/docs/r1.1.2/streaming.html, retrieved in 2013.