Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Debromination of Bromobenzene Induced by Hydrated Electrons in Aqueous Solution
Corresponding Author(s) : Hongjing Li
Asian Journal of Chemistry,
Vol. 26 No. 14 (2014): Vol 26 Issue 14
Abstract
The nanosecond laser flash photolysis (LFP) experiments were adopted to investigate the kinetics and mechanisms of the reaction between bromobenzene and hydrated electrons (eaq) in aqueous solution. The results showed that the rate constants of first-order and second-order reaction were 6.3 × 105 s-1 and 1.7 × 1010 L mol-1 s-1, respectively. The final products were biphenyl, bromobiphenyl and Br-, which determined by gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). The optimal structure of bromobenzene anion radicals, the bond lengths and bond angles were calculated and analyzed by time-dependent density functional theory (TD-DFT)-UB3LYP method and the primary absorption peaks of the anion radicals lied in the ranges of 250-600 nm. The main reaction pathway was speculated that bromobenzene molecules generated unstable anion radicals when attacked by hydrated electrons and then the molecules debrominated to generate benzene radicals and Br-.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.H. Ding, K.M. Aldous, R.G. Briggs, H. Valente, D.R. Hilker, S. Connor and G.A. Eadon, Chemosphere, 25, 675 (1992); doi:10.1016/0045-6535(92)90430-Y.
- E.M. Boyd, K. Killham, J. Wright, S. Rumford, M. Hetheridge, R. Cumming and A.A. Meharg, Chemosphere, 35, 1967 (1997); doi:10.1016/S0045-6535(97)00271-3.
- S. Masunaga, Y. Yonezawa and Y. Urushigawa, Water Res., 25, 275 (1991); doi:10.1016/0043-1354(91)90007-D.
- B.G. Oliver, Adv. Chem., 216, 471 (1987); doi:10.1021/ba-1987-0216.ch014.
- M. Wang and K.C. Jones, J. Agric. Food Chem., 42, 2322 (1994); doi:10.1021/jf00046a046.
- E. Halfon and M.G. Reggiani, Environ. Sci. Technol., 20, 1173 (1986); doi:10.1021/es00153a014.
- M. Julliard, M. Chanon and A. Galadi, J. Photochem. Photobiol. Chem., 83, 107 (1994); doi:10.1016/1010-6030(94)03811-2.
- H. Mohan and K.-D. Asmus, J. Chem. Soc. Perkin Trans. II, 1795 (1987); doi:10.1039/p29870001795.
- D.B. Naik and H. Mohan, Radiat. Phys. Chem., 73, 218 (2005); doi:10.1016/j.radphyschem.2004.08.010.
- J. Lichtscheidl and N. Getoff, Int. J. Radiat. Phys. Chem., 8, 661 (1976); doi:10.1016/0020-7055(76)90037-1.
- S. Higashino, A. Saeki, K. Okamoto, S. Tagawa and T. Kozawa, J. Phys. Chem. A, 114, 8069 (2010); doi:10.1021/jp102828g.
- H.X. Yuan, H.X. Pan, Y.L. Wu, J.-F. Zhao and W.-B. Dong, Acta Phys. Chim. Sin., 28, 957 (2012); doi:10.3866/PKU.WHXB201202203.
- Y. Mori, H. Shinoda, T. Nakano and T. Kitagawa, J. Phys. Chem. A, 106, 11743 (2002); doi:10.1021/jp020332l.
- L. Huang, W.B. Dong and H.Q. Hou, Chem. Phys. Lett., 436, 124 (2007); doi:10.1016/j.cplett.2007.01.037.
- M. Wu, W. Shi, Y. Wang, Z. Jiao, J. Wang, G. Ding and J. Fu, Environ. Technol., 30, 191 (2009); doi:10.1080/09593330802468954.
- J.M. Saveant, J. Phys. Chem., 98, 3716 (1994); doi:10.1021/j100065a029.
- M. Arun Prasad and M.V. Sangaranarayanan, Tetrahedron, 61, 3755 (2005); doi:10.1016/j.tet.2005.02.011.
- E. Taskinen, Struct. Chem., 11, 293 (2000); doi:10.1023/A:1009286209912.
- I.V. Beregovaya and L.N. Shchegoleva, Chem. Phys. Lett., 348, 501 (2001); doi:10.1016/S0009-2614(01)01171-X.
- K.D. Jordan, J.A. Michejda and P.D. Burrow, J. Am. Chem. Soc., 98, 7189 (1976); doi:10.1021/ja00439a014.
References
W.H. Ding, K.M. Aldous, R.G. Briggs, H. Valente, D.R. Hilker, S. Connor and G.A. Eadon, Chemosphere, 25, 675 (1992); doi:10.1016/0045-6535(92)90430-Y.
E.M. Boyd, K. Killham, J. Wright, S. Rumford, M. Hetheridge, R. Cumming and A.A. Meharg, Chemosphere, 35, 1967 (1997); doi:10.1016/S0045-6535(97)00271-3.
S. Masunaga, Y. Yonezawa and Y. Urushigawa, Water Res., 25, 275 (1991); doi:10.1016/0043-1354(91)90007-D.
B.G. Oliver, Adv. Chem., 216, 471 (1987); doi:10.1021/ba-1987-0216.ch014.
M. Wang and K.C. Jones, J. Agric. Food Chem., 42, 2322 (1994); doi:10.1021/jf00046a046.
E. Halfon and M.G. Reggiani, Environ. Sci. Technol., 20, 1173 (1986); doi:10.1021/es00153a014.
M. Julliard, M. Chanon and A. Galadi, J. Photochem. Photobiol. Chem., 83, 107 (1994); doi:10.1016/1010-6030(94)03811-2.
H. Mohan and K.-D. Asmus, J. Chem. Soc. Perkin Trans. II, 1795 (1987); doi:10.1039/p29870001795.
D.B. Naik and H. Mohan, Radiat. Phys. Chem., 73, 218 (2005); doi:10.1016/j.radphyschem.2004.08.010.
J. Lichtscheidl and N. Getoff, Int. J. Radiat. Phys. Chem., 8, 661 (1976); doi:10.1016/0020-7055(76)90037-1.
S. Higashino, A. Saeki, K. Okamoto, S. Tagawa and T. Kozawa, J. Phys. Chem. A, 114, 8069 (2010); doi:10.1021/jp102828g.
H.X. Yuan, H.X. Pan, Y.L. Wu, J.-F. Zhao and W.-B. Dong, Acta Phys. Chim. Sin., 28, 957 (2012); doi:10.3866/PKU.WHXB201202203.
Y. Mori, H. Shinoda, T. Nakano and T. Kitagawa, J. Phys. Chem. A, 106, 11743 (2002); doi:10.1021/jp020332l.
L. Huang, W.B. Dong and H.Q. Hou, Chem. Phys. Lett., 436, 124 (2007); doi:10.1016/j.cplett.2007.01.037.
M. Wu, W. Shi, Y. Wang, Z. Jiao, J. Wang, G. Ding and J. Fu, Environ. Technol., 30, 191 (2009); doi:10.1080/09593330802468954.
J.M. Saveant, J. Phys. Chem., 98, 3716 (1994); doi:10.1021/j100065a029.
M. Arun Prasad and M.V. Sangaranarayanan, Tetrahedron, 61, 3755 (2005); doi:10.1016/j.tet.2005.02.011.
E. Taskinen, Struct. Chem., 11, 293 (2000); doi:10.1023/A:1009286209912.
I.V. Beregovaya and L.N. Shchegoleva, Chem. Phys. Lett., 348, 501 (2001); doi:10.1016/S0009-2614(01)01171-X.
K.D. Jordan, J.A. Michejda and P.D. Burrow, J. Am. Chem. Soc., 98, 7189 (1976); doi:10.1021/ja00439a014.