Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
RP-HPLC Estimation of Bumetanide and its Impurities in Oral Solid Dosage Form
Corresponding Author(s) : G.V. Krishna Mohan
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
A novel and simultaneous stability indicating RP-HPLC method has been developed for quantitative analysis of bumetanide in fixed dose pharmaceutical formulations. Bumetanide and its degradation products are well separated by the Discovery C18, 250 × 4.6 mm, 5 μm column as a stationary phase and (50:50 v/v) of 0.1 % o-phthalaldehyde and acetonitrile as a mobile phase. All the compounds are monitored using photodiode array detector at 254 nm with an isocratic method and the flow rate of 1.0 mL/min was maintained. Validation of method was performed as per International Council for Harmonization (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) were evaluated. The linearity of the proposed method was found to be 0.315-1.875 μg/mL for bumetanide and its impurities. The developed method is more economical and suitable for laboratory use because of solvent consumption is very less. Hence, the developed method can be used for the determination of bumetanide and its impurities in drug product stability studies and pharmaceutical formulations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Shahid-ul-Islam, M. Shahid and F. Mohammad, Ind. Eng. Chem. Res., 52, 5245 (2013); https://doi.org/10.1021/ie303627x.
- S.E. Manahan, Chemistry, Green Chemistry and Environmental Chemistry, In: Green Chemistry and the Ten Commandments of Sustainability, ChemChar Research Inc.: USA edn 2 (2006).
- M. Hedidi, S.M. Hamdi, T. Mazari, B. Boutemeur, C. Rabia, F. Chemat and M. Hamdi, Tetrahedron, 62, 5652 (2006); https://doi.org/10.1016/j.tet.2006.03.095.
- K. Mahajan, M. Swami and R.V. Singh, Russ. J. Coord. Chem., 35, 179 (2009); https://doi.org/10.1134/S1070328409030038.
- A.P. Mishra, N. Sharma and R.K. Jain, Avan. Quím., 7, 77 (2012).
- J.K. Tang, Y.Z. Li, Q.L. Wang, E.Q. Gao, D.Z. Liao, Z.H. Jiang, S.P. Yan, P. Cheng, L.F. Wang and G.L. Wang, Inorg. Chem., 41, 2188 (2002); https://doi.org/10.1021/ic010674q.
- J.H. Bi, M. Li and Y. Chen, Asian J. Chem., 22, 7389 (2010).
- D. Parker, P.K. Senanayake and J.A. Gareth Williams, J. Chem. Soc. Perkin II, 2129 (1998); https://doi.org/10.1039/a801270i.
- C.J. Burrows and J.G. Muller, Chem. Rev., 98, 1109 (1998); https://doi.org/10.1021/cr960421s.
- J.G. Muller, X. Chen, A.C. Dadiz, S.E. Rokita and C.J. Burrows, Pure Appl. Chem., 65, 545 (1993); https://doi.org/10.1351/pac199365030545.
- K.D. Karlin and Y. Gultneh, Prog. Inorg. Chem., 35, 219 (1987); https://doi.org/10.1002/9780470166369.ch3.
- L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press: Cambridge, edn 2 (1989).
- D.P. Singh, R. Kumar, V. Malik and P. Tyagi, Transition Met. Chem., 32, 1051 (2007); https://doi.org/10.1007/s11243-007-0279-2.
- R. Huszánk, G. Lendvay and O. Horváth, J. Bioinorg. Chem., 12, 681 (2007).
- D.W. Armstrong, K. Rundlett and G.L. Reid, Anal. Chem., 66, 1690 (1994); https://doi.org/10.1021/ac00082a015.
- G.W. Gokel, W.M. Leevy and M.E. Weber, Chem. Rev., 104, 2723 (2004); https://doi.org/10.1021/cr020080k.
- T.J. Hubin, P.N.A. Amoyaw, K.D. Roewe, N.C. Simpson, R.D. Maples, T.R.N. Carder Freeman, A.N. Cain, J.G. Le, S.J. Archibald, S.I. Khan, B.L. Tekwani and M.O.F. Khan, Bioorg. Med. Chem., 22, 3239 (2014); https://doi.org/10.1016/j.bmc.2014.05.003.
- H.A. E1-Boraey and O.A. El-Gammal, Open Chem. J., 5, 51 (2018); https://doi.org/10.2174/1874842201805010051.
- S. Ali, V. Singh, P. Jain and V. Tripathi, J. Saudi Chem. Soc., 23, 52 (2019); https://doi.org/10.1016/j.jscs.2018.04.005.
- R.N. Pradhan, S.M. Hossain, A. Lakma, D.D. Stojkov, T.Z. Verbiæ, G. Angelovski, R. Pujales-Paradela, C. Platas-Iglesias and A.K. Singh, Inorg. Chim. Acta, 486, 252 (2019); https://doi.org/10.1016/j.ica.2018.10.050.
- A. Chaudhary and E. Rawat, Int. J. Inorg. Chem., 2014, Article ID 509151 (2014); https://doi.org/10.1155/2014/509151.
- D.A. Robson, L.H. Rees, P. Mountford and M. Schroder, Chem. Commun., 14, 1269 (2000); https://doi.org/10.1039/b003019h.
- L.A. Ehrlich, P.J. Skrdla, W.K. Jarrell, J.W. Sibert, N.R. Armstrong, S.S. Saavedra, A.G.M. Barrett and B.M. Hoffman, Inorg. Chem., 39, 3963 (2000); https://doi.org/10.1021/ic991033m.
- S. Chaudhary and D. Kumar, Proc. Nat. Acad. Sci. (India), 78, 207 (2008).
- D. Kumar and S. Singh, J. Chem. Pharm. Res., 8, 744 (2016).
- K.R. Fiebelkorn, S.A. Crawford, M.L. McElmeel and J.H. Jorgensen, J. Clin. Microbiol., 41, 4740 (2003); https://doi.org/10.1128/JCM.41.10.4740-4744.2003.
- D.P. Singh and V. Grover, Acta Chim. Slov., 57, 780 (2010).
- S.N. Singh, R.K. Agarwal and M. Katyal, Molecular Structure: A Spectroscopic Approach, Discovery Publication: New Delhi (1990).
- N.S. Gill, R.H. Nuttall, D.E. Scaife and D.W.A. Sharp, J. Inorg. Nucl. Chem., 18, 79 (1961); https://doi.org/10.1016/0022-1902(61)80372-2.
- V.K. Sharma, O.P. Pandey, S.K. Sengupta and D.M. Halepoto, Transition Met. Chem., 14, 263 (1989); https://doi.org/10.1007/BF01098225.
- A. Aukauloo, X. Ottenwaelder, R. Ruiz, S. Poussereau, Y. Pei, Y. Journaux, P. Fleurat, F. Volatron, B. Cervera and M.C. Muñoz, Eur. J. Inorg. Chem., 7, 1067 (1999); https://doi.org/10.1002/(SICI)1099-0682(199907)1999:7<1067::AIDEJIC1067>3.0.CO;2-7.
- A.A. Hashmi, A.A. Sheikh, S. Shreaz and L.A. Khan, J. Chem. Pharm. Res., 2, 172 (2010).
- R.A. Sheikh, S. Sheikh, L.A. Khan and A.A. Hashmi, J. Chem. Pharm. Res., 2, 274 (2010).
References
Shahid-ul-Islam, M. Shahid and F. Mohammad, Ind. Eng. Chem. Res., 52, 5245 (2013); https://doi.org/10.1021/ie303627x.
S.E. Manahan, Chemistry, Green Chemistry and Environmental Chemistry, In: Green Chemistry and the Ten Commandments of Sustainability, ChemChar Research Inc.: USA edn 2 (2006).
M. Hedidi, S.M. Hamdi, T. Mazari, B. Boutemeur, C. Rabia, F. Chemat and M. Hamdi, Tetrahedron, 62, 5652 (2006); https://doi.org/10.1016/j.tet.2006.03.095.
K. Mahajan, M. Swami and R.V. Singh, Russ. J. Coord. Chem., 35, 179 (2009); https://doi.org/10.1134/S1070328409030038.
A.P. Mishra, N. Sharma and R.K. Jain, Avan. Quím., 7, 77 (2012).
J.K. Tang, Y.Z. Li, Q.L. Wang, E.Q. Gao, D.Z. Liao, Z.H. Jiang, S.P. Yan, P. Cheng, L.F. Wang and G.L. Wang, Inorg. Chem., 41, 2188 (2002); https://doi.org/10.1021/ic010674q.
J.H. Bi, M. Li and Y. Chen, Asian J. Chem., 22, 7389 (2010).
D. Parker, P.K. Senanayake and J.A. Gareth Williams, J. Chem. Soc. Perkin II, 2129 (1998); https://doi.org/10.1039/a801270i.
C.J. Burrows and J.G. Muller, Chem. Rev., 98, 1109 (1998); https://doi.org/10.1021/cr960421s.
J.G. Muller, X. Chen, A.C. Dadiz, S.E. Rokita and C.J. Burrows, Pure Appl. Chem., 65, 545 (1993); https://doi.org/10.1351/pac199365030545.
K.D. Karlin and Y. Gultneh, Prog. Inorg. Chem., 35, 219 (1987); https://doi.org/10.1002/9780470166369.ch3.
L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press: Cambridge, edn 2 (1989).
D.P. Singh, R. Kumar, V. Malik and P. Tyagi, Transition Met. Chem., 32, 1051 (2007); https://doi.org/10.1007/s11243-007-0279-2.
R. Huszánk, G. Lendvay and O. Horváth, J. Bioinorg. Chem., 12, 681 (2007).
D.W. Armstrong, K. Rundlett and G.L. Reid, Anal. Chem., 66, 1690 (1994); https://doi.org/10.1021/ac00082a015.
G.W. Gokel, W.M. Leevy and M.E. Weber, Chem. Rev., 104, 2723 (2004); https://doi.org/10.1021/cr020080k.
T.J. Hubin, P.N.A. Amoyaw, K.D. Roewe, N.C. Simpson, R.D. Maples, T.R.N. Carder Freeman, A.N. Cain, J.G. Le, S.J. Archibald, S.I. Khan, B.L. Tekwani and M.O.F. Khan, Bioorg. Med. Chem., 22, 3239 (2014); https://doi.org/10.1016/j.bmc.2014.05.003.
H.A. E1-Boraey and O.A. El-Gammal, Open Chem. J., 5, 51 (2018); https://doi.org/10.2174/1874842201805010051.
S. Ali, V. Singh, P. Jain and V. Tripathi, J. Saudi Chem. Soc., 23, 52 (2019); https://doi.org/10.1016/j.jscs.2018.04.005.
R.N. Pradhan, S.M. Hossain, A. Lakma, D.D. Stojkov, T.Z. Verbiæ, G. Angelovski, R. Pujales-Paradela, C. Platas-Iglesias and A.K. Singh, Inorg. Chim. Acta, 486, 252 (2019); https://doi.org/10.1016/j.ica.2018.10.050.
A. Chaudhary and E. Rawat, Int. J. Inorg. Chem., 2014, Article ID 509151 (2014); https://doi.org/10.1155/2014/509151.
D.A. Robson, L.H. Rees, P. Mountford and M. Schroder, Chem. Commun., 14, 1269 (2000); https://doi.org/10.1039/b003019h.
L.A. Ehrlich, P.J. Skrdla, W.K. Jarrell, J.W. Sibert, N.R. Armstrong, S.S. Saavedra, A.G.M. Barrett and B.M. Hoffman, Inorg. Chem., 39, 3963 (2000); https://doi.org/10.1021/ic991033m.
S. Chaudhary and D. Kumar, Proc. Nat. Acad. Sci. (India), 78, 207 (2008).
D. Kumar and S. Singh, J. Chem. Pharm. Res., 8, 744 (2016).
K.R. Fiebelkorn, S.A. Crawford, M.L. McElmeel and J.H. Jorgensen, J. Clin. Microbiol., 41, 4740 (2003); https://doi.org/10.1128/JCM.41.10.4740-4744.2003.
D.P. Singh and V. Grover, Acta Chim. Slov., 57, 780 (2010).
S.N. Singh, R.K. Agarwal and M. Katyal, Molecular Structure: A Spectroscopic Approach, Discovery Publication: New Delhi (1990).
N.S. Gill, R.H. Nuttall, D.E. Scaife and D.W.A. Sharp, J. Inorg. Nucl. Chem., 18, 79 (1961); https://doi.org/10.1016/0022-1902(61)80372-2.
V.K. Sharma, O.P. Pandey, S.K. Sengupta and D.M. Halepoto, Transition Met. Chem., 14, 263 (1989); https://doi.org/10.1007/BF01098225.
A. Aukauloo, X. Ottenwaelder, R. Ruiz, S. Poussereau, Y. Pei, Y. Journaux, P. Fleurat, F. Volatron, B. Cervera and M.C. Muñoz, Eur. J. Inorg. Chem., 7, 1067 (1999); https://doi.org/10.1002/(SICI)1099-0682(199907)1999:7<1067::AIDEJIC1067>3.0.CO;2-7.
A.A. Hashmi, A.A. Sheikh, S. Shreaz and L.A. Khan, J. Chem. Pharm. Res., 2, 172 (2010).
R.A. Sheikh, S. Sheikh, L.A. Khan and A.A. Hashmi, J. Chem. Pharm. Res., 2, 274 (2010).