Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effective Activated Carbon as Adsorbent for the Removal of Copper(II) Ions from Wastewater
Corresponding Author(s) : K. Ravindhranath
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Nitric acid activated carbons prepared from the barks of Limonia acidissima plant (NALABC) and stems of Hibiscus cannabinus plant (NAHCSC) are investigated as adsorbents for the removal of Cu(II) ions from waste water using batch methods of extraction. Various extraction conditions namely, pH, time of equilibration, sorbent concentration, initial concentration of Cu(II) ions and temperature, are optimized for the maximum removal. Substantial amounts of Cu(II) are extracted in the pH range: 3 to 9 and adsorption capacities are 19.6 mg/g for NALABC and 29.4 mg/g for NAHCSC, which are more than many active carbons developed in the previous works. It is interesting to note that the adsorbents are effective in acidic, neutral and also in basic conditions of the water samples and thus paving the way for applying these adsorbents in wide pH ranges of diverse samples. Five-fold excess of common co-ions that are normally present in water, have marginally affected the % removal. Thermodynamic parameters are evaluated for the spontaneity and nature of adsorption processes. The adsorption phenomenon is analyzed using Langmuir and Freundlich isotherm models and noted that Langmuir isotherm model suits better indicating the uniform and mono-layer nature of adsorption. Kinetics of adsorption is analyzed and found that pseudo second-order kinetics preferably explains the adsorption of Cu(II). The spent NALABC and NAHCSC can be regenerated and subsequently used. The adsorbents developed are found to be effective in removing Cu(II) ions from the real water samples collected from polluted lakes and copper based industries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Arbabi and N. Golshani, Int. J. Epidemiol. Res., 3, 283 (2016).
- C.S. Zhu, L.P. Wang and W.B. Chen, J. Hazard. Mater., 168, 739 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.085.
- Z. Aksu and I.A. Isoglu, Process Biochem., 40, 3031 (2005); https://doi.org/10.1016/j.procbio.2005.02.004.
- A. Ozer, D. Ozer and A. Ozer, Process Biochem., 39, 2183 (2004); https://doi.org/10.1016/j.procbio.2003.11.008.
- C. Namasivayam and K. Ranganathan, Environ. Technol., 16, 851 (1995); https://doi.org/10.1080/09593330.1995.9618282.
- N. Samadi, R. Ansari and B. Khodavirdilo, Egyptian J. Petrol., 26, 375 (2017); https://doi.org/10.1016/j.ejpe.2016.05.010.
- L.O.E. Agwaramgbo, R.F. Cardoso and T.S. Matos, J. Scient. Res. Reports, 12, 1 (2016); https://doi.org/10.9734/JSRR/2016/31118.
- M.A. Hossain, H.H. Ngo, W.S. Guo and T.V. Nguyen, J. Water Sustain., 2, 87 (2012).
- M.I. Sabela, K. Kunene, S. Kanchi, N.M. Xhakaza, A. Bathinapatla, P. Mdluli, D. Sharma and K. Bisetty, Arab. J. Chem., (2016); https://doi.org/10.1016/j.arabjc.2016.06.001.
- N.K.E.M. Yahaya, I. Abustan, M.F.P.M. Latiff, O.S. Bello and M.A. Ahmad, Int. J. Eng. Technol., 11, 186 (2011).
- T. Murat, I. Mustafa and S. Omer, Turk. J. Chem., 23, 185 (1999).
- M. Imamoglu and O. Tekir, Desalination, 228, 108 (2008); https://doi.org/10.1016/j.desal.2007.08.011.
- G. Issabayeva, M.L. Aroua and N.M. Sulaiman, Desalination, 262, 94 (2010); https://doi.org/10.1016/j.desal.2010.05.051.
- M.H. Kalavathy, T. Karthikeyan, S. Rajgopal and L.R. Miranda, J. Colloid Interface Sci., 292, 354 (2005); https://doi.org/10.1016/j.jcis.2005.05.087.
- F. Bouhamed, Z. Elouear and J. Bouzid, J. Taiwan Inst. Chem., 43, 741 (2012); https://doi.org/10.1016/j.jtice.2012.02.011.
- H. Runtti, S. Tuomikoski, T. Kangas, U. Lassi, T. Kuokkanen and J. Ra¨mo¨, J. Water Process. Eng., 4, 12 (2014); https://doi.org/10.1016/j.jwpe.2014.08.009.
- X. Wang, X. Liang, Y. Wang, X. Wang, M. Liu, D. Yin, S. Xia, J. Zhao and Y. Zhang, Desalination, 278, 231 (2011); https://doi.org/10.1016/j.desal.2011.05.033.
- M.M. Rao, A. Ramesh, G.P. Chandra Rao and K. Seshaiah, J. Hazard. Mater., 129, 123 (2006); https://doi.org/10.1016/j.jhazmat.2005.08.018.
- D. Ozcimen and A. Ersoy-Mericboyu, J. Hazard. Mater., 168, 1118 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.148.
- P. Patnukao, A. Kongsuwan and P. Pavasant, J. Environ. Sci. (China), 20, 1028 (2008); https://doi.org/10.1016/S1001-0742(08)62145-2.
- Metcalf and Eddy, Wastewater Engineering: Treatment of Reuse, McGraw Hill Co., New York, edn 4 (2003).
- S. Ravulapalli and R. Kunta, J. Environ. Chem. Eng., 6, 4298 (2018); https://doi.org/10.1016/j.jece.2018.06.033.
- A.R.K. Trivedy, Pollution Management in Industries, Environmental Publications: Karad, India, edn 2 (1995).
- American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, edn 20 (1998).
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
- H. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723.
- A. Naga Babu, G.V. Krishna Mohan, K. Kalpana and K. Ravindranath J. Environ. Chem. Eng., 6, 906 (2018); https://doi.org/10.1016/j.jece.2018.01.014.
- S. Ravulapalli, and K. Ravindhranath, Water Sci. Technol., 78, 1377 (2018); https://doi.org/10.2166/wst.2018.413.
- S. Ravulapalli and K. Ravindhranath, J. Fluorine Chem., 193, 58 (2017); https://doi.org/10.1016/j.jfluchem.2016.11.013.
References
M. Arbabi and N. Golshani, Int. J. Epidemiol. Res., 3, 283 (2016).
C.S. Zhu, L.P. Wang and W.B. Chen, J. Hazard. Mater., 168, 739 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.085.
Z. Aksu and I.A. Isoglu, Process Biochem., 40, 3031 (2005); https://doi.org/10.1016/j.procbio.2005.02.004.
A. Ozer, D. Ozer and A. Ozer, Process Biochem., 39, 2183 (2004); https://doi.org/10.1016/j.procbio.2003.11.008.
C. Namasivayam and K. Ranganathan, Environ. Technol., 16, 851 (1995); https://doi.org/10.1080/09593330.1995.9618282.
N. Samadi, R. Ansari and B. Khodavirdilo, Egyptian J. Petrol., 26, 375 (2017); https://doi.org/10.1016/j.ejpe.2016.05.010.
L.O.E. Agwaramgbo, R.F. Cardoso and T.S. Matos, J. Scient. Res. Reports, 12, 1 (2016); https://doi.org/10.9734/JSRR/2016/31118.
M.A. Hossain, H.H. Ngo, W.S. Guo and T.V. Nguyen, J. Water Sustain., 2, 87 (2012).
M.I. Sabela, K. Kunene, S. Kanchi, N.M. Xhakaza, A. Bathinapatla, P. Mdluli, D. Sharma and K. Bisetty, Arab. J. Chem., (2016); https://doi.org/10.1016/j.arabjc.2016.06.001.
N.K.E.M. Yahaya, I. Abustan, M.F.P.M. Latiff, O.S. Bello and M.A. Ahmad, Int. J. Eng. Technol., 11, 186 (2011).
T. Murat, I. Mustafa and S. Omer, Turk. J. Chem., 23, 185 (1999).
M. Imamoglu and O. Tekir, Desalination, 228, 108 (2008); https://doi.org/10.1016/j.desal.2007.08.011.
G. Issabayeva, M.L. Aroua and N.M. Sulaiman, Desalination, 262, 94 (2010); https://doi.org/10.1016/j.desal.2010.05.051.
M.H. Kalavathy, T. Karthikeyan, S. Rajgopal and L.R. Miranda, J. Colloid Interface Sci., 292, 354 (2005); https://doi.org/10.1016/j.jcis.2005.05.087.
F. Bouhamed, Z. Elouear and J. Bouzid, J. Taiwan Inst. Chem., 43, 741 (2012); https://doi.org/10.1016/j.jtice.2012.02.011.
H. Runtti, S. Tuomikoski, T. Kangas, U. Lassi, T. Kuokkanen and J. Ra¨mo¨, J. Water Process. Eng., 4, 12 (2014); https://doi.org/10.1016/j.jwpe.2014.08.009.
X. Wang, X. Liang, Y. Wang, X. Wang, M. Liu, D. Yin, S. Xia, J. Zhao and Y. Zhang, Desalination, 278, 231 (2011); https://doi.org/10.1016/j.desal.2011.05.033.
M.M. Rao, A. Ramesh, G.P. Chandra Rao and K. Seshaiah, J. Hazard. Mater., 129, 123 (2006); https://doi.org/10.1016/j.jhazmat.2005.08.018.
D. Ozcimen and A. Ersoy-Mericboyu, J. Hazard. Mater., 168, 1118 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.148.
P. Patnukao, A. Kongsuwan and P. Pavasant, J. Environ. Sci. (China), 20, 1028 (2008); https://doi.org/10.1016/S1001-0742(08)62145-2.
Metcalf and Eddy, Wastewater Engineering: Treatment of Reuse, McGraw Hill Co., New York, edn 4 (2003).
S. Ravulapalli and R. Kunta, J. Environ. Chem. Eng., 6, 4298 (2018); https://doi.org/10.1016/j.jece.2018.06.033.
A.R.K. Trivedy, Pollution Management in Industries, Environmental Publications: Karad, India, edn 2 (1995).
American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, edn 20 (1998).
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
H. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723.
A. Naga Babu, G.V. Krishna Mohan, K. Kalpana and K. Ravindranath J. Environ. Chem. Eng., 6, 906 (2018); https://doi.org/10.1016/j.jece.2018.01.014.
S. Ravulapalli, and K. Ravindhranath, Water Sci. Technol., 78, 1377 (2018); https://doi.org/10.2166/wst.2018.413.
S. Ravulapalli and K. Ravindhranath, J. Fluorine Chem., 193, 58 (2017); https://doi.org/10.1016/j.jfluchem.2016.11.013.