Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of SrBi2O4/Ti Anode and Its Photocatalytic and Photoelectrochemical Oxidation Performance
Corresponding Author(s) : Lingfeng Zhu
Asian Journal of Chemistry,
Vol. 26 No. 14 (2014): Vol 26 Issue 14
Abstract
DSA anode SrBi2O4/Ti is prepared and used for photocatalytic and photoelectrochemical oxdiation of azo dye Orange II. SrBi2O4 is tentatively immobilized onto H2C2O4 treated Ti substrate by dip-coating of SrBi2O4 precursor solution. Subsequent calicination of the immobilized Ti substrate at 700 °C for 2 h could produce SrBi2O4/Ti anode. The surface pore structure of H2C2O4 treated Ti substrate facilitates the combination between SrBi2O4 crystals and Ti substrate by SEM analysis. The average diameter of SrBi2O4 crytals is within 5 μm and they are compactly combined with each other. The component and crystal structure of SrBi2O4 are also confirmed by EDX and XRD analysis. Under the irradiation from Xenon lamp (with UV-cutoff filter), tungsten lamp and ultraviolet lamp, the Orange II decolorization efficiency by photoelectrochemical oxidation is significantly higher than those by photocatalytic oxidation and electrochemical oxidation alone. Meanwhile, the synergetic factor f under tungsten lamp irradiation achieves 239.5 %, which is more significant than under visible and ultraviolet irradiation. Both the wavelength of light source and the proportion between visible light and ultraviolet are proved to be fundamental for the photoelectrochemical process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Andreozzi, V. Caprio, A. Insola and R. Marotta, Catal. Today, 53, 51 (1999); doi:10.1016/S0920-5861(99)00102-9.
- S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco and W. Gernjak, Catal. Today, 147, 1 (2009); doi:10.1016/j.cattod.2009.06.018.
- A. Yasar, N. Ahmad, H. Latif and A.A.A. Khan, Ozone Sci. Eng., 29, 485 (2007); doi:10.1080/01919510701617710.
- C. Comninellis and G.H. Chen, Electrochemistry for the Environment. Springer Science Business Media, New York (2010).
- C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios and D. Mantzavinos, J. Chem. Technol. Biotechnol., 83, 769 (2008); doi:10.1002/jctb.1873.
- R.T. Pelegrini, R.S. Freire, N. Duran and R. Bertazzoli, Environ. Sci. Technol., 35, 2849 (2001); doi:10.1021/es001784j.
- J. Peller, O. Wiest and P.V. Kamat, Environ. Sci. Technol., 37, 1926 (2003); doi:10.1021/es0261630.
- K. Vinodgopal, S. Hotchandani and P.V. Kamat, J. Phys. Chem., 97, 9040 (1993); doi:10.1021/j100137a033.
- Z.C. Wu and M.H. Zhou, Environ. Sci. Technol., 35, 2698 (2001); doi:10.1021/es001652q.
- L.B. Stadler, A.S. Ernstoff, D.S. Aga and N.G. Love, Environ. Sci. Technol., 46, 10485 (2012); doi:10.1021/es303478w.
- A.M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem., 29, 147 (1999); doi:10.1023/A:1003411906212.
- G.T. Li, J.H. Qu, X.W. Zhang and J.T. Ge, Water Res., 40, 213 (2006); doi:10.1016/j.watres.2005.10.039.
- C. Hu, X.X. Hu, J. Guo and J.H. Qu, Environ. Sci. Technol., 40, 5508 (2006); doi:10.1021/es052405v.
- T.A.M. Haemers and D.J.W. Ijdo, Mater. Res. Bull., 26, 989 (1991); doi:10.1016/0025-5408(91)90080-6.
- J.R. Feng and D.C. Johnson, J. Electrochem. Soc., 138, 3328 (1991); doi:10.1149/1.2085410.
- G.T. Li, H.Y. Yip, Ch. Hu and P.K. Wong, Mater. Res. Bull., 46, 153 (2011); doi:10.1016/j.materresbull.2010.11.030.
- X.Z. Li, H.L. Liu, P.T. Yue and Y.P. Sun, Environ. Sci. Technol., 34, 4401 (2000); doi:10.1021/es000939k.
- S.P. Yu, Research of Photoelectric Catalytic Degradation of Organic Dyes, Doctor Dissertation of South China University of Technology (2004) (in Chinese).
References
R. Andreozzi, V. Caprio, A. Insola and R. Marotta, Catal. Today, 53, 51 (1999); doi:10.1016/S0920-5861(99)00102-9.
S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco and W. Gernjak, Catal. Today, 147, 1 (2009); doi:10.1016/j.cattod.2009.06.018.
A. Yasar, N. Ahmad, H. Latif and A.A.A. Khan, Ozone Sci. Eng., 29, 485 (2007); doi:10.1080/01919510701617710.
C. Comninellis and G.H. Chen, Electrochemistry for the Environment. Springer Science Business Media, New York (2010).
C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios and D. Mantzavinos, J. Chem. Technol. Biotechnol., 83, 769 (2008); doi:10.1002/jctb.1873.
R.T. Pelegrini, R.S. Freire, N. Duran and R. Bertazzoli, Environ. Sci. Technol., 35, 2849 (2001); doi:10.1021/es001784j.
J. Peller, O. Wiest and P.V. Kamat, Environ. Sci. Technol., 37, 1926 (2003); doi:10.1021/es0261630.
K. Vinodgopal, S. Hotchandani and P.V. Kamat, J. Phys. Chem., 97, 9040 (1993); doi:10.1021/j100137a033.
Z.C. Wu and M.H. Zhou, Environ. Sci. Technol., 35, 2698 (2001); doi:10.1021/es001652q.
L.B. Stadler, A.S. Ernstoff, D.S. Aga and N.G. Love, Environ. Sci. Technol., 46, 10485 (2012); doi:10.1021/es303478w.
A.M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem., 29, 147 (1999); doi:10.1023/A:1003411906212.
G.T. Li, J.H. Qu, X.W. Zhang and J.T. Ge, Water Res., 40, 213 (2006); doi:10.1016/j.watres.2005.10.039.
C. Hu, X.X. Hu, J. Guo and J.H. Qu, Environ. Sci. Technol., 40, 5508 (2006); doi:10.1021/es052405v.
T.A.M. Haemers and D.J.W. Ijdo, Mater. Res. Bull., 26, 989 (1991); doi:10.1016/0025-5408(91)90080-6.
J.R. Feng and D.C. Johnson, J. Electrochem. Soc., 138, 3328 (1991); doi:10.1149/1.2085410.
G.T. Li, H.Y. Yip, Ch. Hu and P.K. Wong, Mater. Res. Bull., 46, 153 (2011); doi:10.1016/j.materresbull.2010.11.030.
X.Z. Li, H.L. Liu, P.T. Yue and Y.P. Sun, Environ. Sci. Technol., 34, 4401 (2000); doi:10.1021/es000939k.
S.P. Yu, Research of Photoelectric Catalytic Degradation of Organic Dyes, Doctor Dissertation of South China University of Technology (2004) (in Chinese).