Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Determination of p-Phenylenediamine Using Electrochemically Reduced Graphene Oxide
Corresponding Author(s) : Chunyan Wang
Asian Journal of Chemistry,
Vol. 26 No. 14 (2014): Vol 26 Issue 14
Abstract
In this communication, we report a green and effective approach to construct a sensitive detection platform based on electrochemically reduced graphene oxide modified electrode (EG@GCE). The surface morphology and structure of electrochemical reduction of graphene oxide were investigated by utilizing transmission electron microscope, FT-IR spectra, UV-visible spectra and X-ray diffraction. This EG@GCE exhibits sensitive current responses toward the electrooxidation of p-phenylenediamine (PDA) due to the excellent conductivity and large electroactive surface area of electrochemical reduction of graphene oxide and the strong p-p stacking interactions between p-phenylenediamine and the electrochemical reduction of graphene oxide surface. Moreover, a low detection limit of 1.08 μM (S/N = 3) with the linear range of 5 to 200 μM is obtained. This new finding demonstrates that the electrochemical reduction of graphene oxide is a promising candidate of advanced electrode materials for electrochemical determination aromatic amines in environmental analysis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); doi:10.1038/nmat1849.
- C. Lee, X.D. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); doi:10.1126/science.1157996.
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Adv. Mater., 22, 3906 (2010); doi:10.1002/adma.201001068.
- H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); doi:10.1002/adma.200800757.
- M. Segal, Nat. Nanotechnol., 4, 612 (2009); doi:10.1038/nnano.2009.279.
- X.L. Li, X.R. Wang, L. Zhang, S. Lee and H.J. Dai, Science, 319, 1229 (2008); doi:10.1126/science.1150878.
- Z.S. Wu, S.F. Pei, W.C. Ren, D.M. Tang, L. Gao, B. Liu, F. Li, C. Liu and H.-M. Cheng, Adv. Mater., 21, 1756 (2009); doi:10.1002/adma.200802560.
- S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, S.B.T. Nguyen and R.S. Ruoff, Nano Lett., 7, 1888 (2007); doi:10.1021/nl070477+.
- J.L. Vickery, A.J. Patil and S. Mann, Adv. Mater., 21, 2180 (2009); doi:10.1002/adma.200803606.
- C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010); doi:10.1021/nl102661q.
- S. Chen, J.W. Zhu, X.D. Wu, Q.F. Han and X. Wang, ACS Nano, 4, 2822 (2010); doi:10.1021/nn901311t.
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson and K.S. Novoselov, Nat. Mater., 6, 652 (2007); doi:10.1038/nmat1967.
- B. Seger and P.V. Kamat, J. Phys. Chem. C, 113, 7990 (2009); doi:10.1021/jp900360k.
- F.N. Xi, D.J. Zhao, X.W. Wang and P. Chen, Electrochem. Commun., 26, 81 (2013); doi:10.1016/j.elecom.2012.10.017.
- E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo and I. Honma, Nano Lett., 8, 2277 (2008); doi:10.1021/nl800957b.
- X. Wang, L. Zhi and K. Müllen, Nano Lett., 8, 323 (2008); doi:10.1021/nl072838r.
- A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor and Y. Zhang, Nano Lett., 10, 1542 (2010); doi:10.1021/nl9037714.
- P.W. Sutter, J.I. Flege and E.A. Sutter, Nat. Mater., 7, 406 (2008); doi:10.1038/nmat2166.
- X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff, Science, 324, 1312 (2009); doi:10.1126/science.1171245.
- D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, Chem. Soc. Rev., 39, 228 (2009); doi:10.1039/b917103g.
- S.Z. Zu and B.H. Han, J. Phys. Chem. C, 113, 13651 (2009); doi:10.1021/jp9035887.
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
- N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999); doi:10.1021/cm981085u.
- M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang and S. Dong, Chem. Eur. J., 15, 6116 (2009); doi:10.1002/chem.200900596.
- Z. Wang, X. Zhou, J. Zhang, F. Boey and H. Zhang, J. Phys. Chem. C, 113, 14071 (2009); doi:10.1021/jp906348x.
- A.J. Haque, H. Park, D. Sung, S. Jon, S.Y. Choi and K. Kim, Anal. Chem., 84, 1871 (2012); doi:10.1021/ac202562v.
- T.W. Chen, Z.H. Sheng, K. Wang, F.B. Wang and X.H. Xia, Chem. Asian J., 6, 1210 (2011); doi:10.1002/asia.201000836.
- T.R. Crompton, Determination of Organic Substances in Water, John Wiley & Sons: New York (1985).
- P. Dominguez-Sanchez, C.K. O’Sullivan, A.J. Miranda-Ordieres, P. Tunon-Blanco and M.R. Smyth, Anal. Chim. Acta, 291, 349 (1994); doi:10.1016/0003-2670(94)80030-8.
- F.-D. Munteanu, A. Lindgren, J. Emnéus, L. Gorton, T. Ruzgas, E. Csöregi, A. Ciucu, R.B. van Huystee, I.G. Gazaryan and L.M. Lagrimini, Anal. Chem., 70, 2596 (1998); doi:10.1021/ac980022s.
- T.M. Cheng, T.K. Huang, H.K. Lin, S.P. Tung, Y.L. Chen, C.Y. Lee and H.T. Chiu, ACS Appl. Mater. Interfaces, 2, 2773 (2010); doi:10.1021/am100432a.
- B. Fang, A.X. Gu, G.F. Wang, W. Wang, Y.H. Feng, C.H. Zhang and X.J. Zhang, ACS Appl. Mater. Interfaces, 1, 2829 (2009); doi:10.1021/am900576z.
- Y. Qian, C. Wang and Z.-G. Le, Appl. Surf. Sci., 257, 10758 (2011); doi:10.1016/j.apsusc.2011.07.093.
- D. Li, M.B. Müller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nanotechnol., 3, 101 (2008); doi:10.1038/nnano.2007.451.
- K. Ravichandran and R.P. Baldwin, Anal. Chem., 55, 1586 (1983); doi:10.1021/ac00260a032.
- J.D. Wuest and A. Rochefort, Chem. Commun., 46, 2923 (2010); doi:10.1039/b926286e.
- A. Rochefort and J.D. Wuest, Langmuir, 25, 210 (2009); doi:10.1021/la802284j.
References
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); doi:10.1038/nmat1849.
C. Lee, X.D. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); doi:10.1126/science.1157996.
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Adv. Mater., 22, 3906 (2010); doi:10.1002/adma.201001068.
H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); doi:10.1002/adma.200800757.
M. Segal, Nat. Nanotechnol., 4, 612 (2009); doi:10.1038/nnano.2009.279.
X.L. Li, X.R. Wang, L. Zhang, S. Lee and H.J. Dai, Science, 319, 1229 (2008); doi:10.1126/science.1150878.
Z.S. Wu, S.F. Pei, W.C. Ren, D.M. Tang, L. Gao, B. Liu, F. Li, C. Liu and H.-M. Cheng, Adv. Mater., 21, 1756 (2009); doi:10.1002/adma.200802560.
S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, S.B.T. Nguyen and R.S. Ruoff, Nano Lett., 7, 1888 (2007); doi:10.1021/nl070477+.
J.L. Vickery, A.J. Patil and S. Mann, Adv. Mater., 21, 2180 (2009); doi:10.1002/adma.200803606.
C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010); doi:10.1021/nl102661q.
S. Chen, J.W. Zhu, X.D. Wu, Q.F. Han and X. Wang, ACS Nano, 4, 2822 (2010); doi:10.1021/nn901311t.
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson and K.S. Novoselov, Nat. Mater., 6, 652 (2007); doi:10.1038/nmat1967.
B. Seger and P.V. Kamat, J. Phys. Chem. C, 113, 7990 (2009); doi:10.1021/jp900360k.
F.N. Xi, D.J. Zhao, X.W. Wang and P. Chen, Electrochem. Commun., 26, 81 (2013); doi:10.1016/j.elecom.2012.10.017.
E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo and I. Honma, Nano Lett., 8, 2277 (2008); doi:10.1021/nl800957b.
X. Wang, L. Zhi and K. Müllen, Nano Lett., 8, 323 (2008); doi:10.1021/nl072838r.
A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor and Y. Zhang, Nano Lett., 10, 1542 (2010); doi:10.1021/nl9037714.
P.W. Sutter, J.I. Flege and E.A. Sutter, Nat. Mater., 7, 406 (2008); doi:10.1038/nmat2166.
X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff, Science, 324, 1312 (2009); doi:10.1126/science.1171245.
D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, Chem. Soc. Rev., 39, 228 (2009); doi:10.1039/b917103g.
S.Z. Zu and B.H. Han, J. Phys. Chem. C, 113, 13651 (2009); doi:10.1021/jp9035887.
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999); doi:10.1021/cm981085u.
M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang and S. Dong, Chem. Eur. J., 15, 6116 (2009); doi:10.1002/chem.200900596.
Z. Wang, X. Zhou, J. Zhang, F. Boey and H. Zhang, J. Phys. Chem. C, 113, 14071 (2009); doi:10.1021/jp906348x.
A.J. Haque, H. Park, D. Sung, S. Jon, S.Y. Choi and K. Kim, Anal. Chem., 84, 1871 (2012); doi:10.1021/ac202562v.
T.W. Chen, Z.H. Sheng, K. Wang, F.B. Wang and X.H. Xia, Chem. Asian J., 6, 1210 (2011); doi:10.1002/asia.201000836.
T.R. Crompton, Determination of Organic Substances in Water, John Wiley & Sons: New York (1985).
P. Dominguez-Sanchez, C.K. O’Sullivan, A.J. Miranda-Ordieres, P. Tunon-Blanco and M.R. Smyth, Anal. Chim. Acta, 291, 349 (1994); doi:10.1016/0003-2670(94)80030-8.
F.-D. Munteanu, A. Lindgren, J. Emnéus, L. Gorton, T. Ruzgas, E. Csöregi, A. Ciucu, R.B. van Huystee, I.G. Gazaryan and L.M. Lagrimini, Anal. Chem., 70, 2596 (1998); doi:10.1021/ac980022s.
T.M. Cheng, T.K. Huang, H.K. Lin, S.P. Tung, Y.L. Chen, C.Y. Lee and H.T. Chiu, ACS Appl. Mater. Interfaces, 2, 2773 (2010); doi:10.1021/am100432a.
B. Fang, A.X. Gu, G.F. Wang, W. Wang, Y.H. Feng, C.H. Zhang and X.J. Zhang, ACS Appl. Mater. Interfaces, 1, 2829 (2009); doi:10.1021/am900576z.
Y. Qian, C. Wang and Z.-G. Le, Appl. Surf. Sci., 257, 10758 (2011); doi:10.1016/j.apsusc.2011.07.093.
D. Li, M.B. Müller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nanotechnol., 3, 101 (2008); doi:10.1038/nnano.2007.451.
K. Ravichandran and R.P. Baldwin, Anal. Chem., 55, 1586 (1983); doi:10.1021/ac00260a032.
J.D. Wuest and A. Rochefort, Chem. Commun., 46, 2923 (2010); doi:10.1039/b926286e.
A. Rochefort and J.D. Wuest, Langmuir, 25, 210 (2009); doi:10.1021/la802284j.