Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electro Polymerization of o-Phenylenediamine Using Palladium Nanoparticles Coated Fabricated TiO2 Nanotubes Modified Glassy Carbon Electrode
Corresponding Author(s) : M. Alexander
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Fabricated titanate nanotubes (f-TNT) are prepared by chemical deposition method using linen fiber. The f-TNTs is fabricated by TiO2 nanoparticles, the each TiO2 nanoparticles diameter has 80-100 nm in range. The Pd0 nanoparticle was coated on the surface of the f-TNT by chemical reduction method, using NaBH4 as reducing agent. The prepared Pd/f-TNTs characterized by FT-IR, FE-SEM and HRTEM, the result shows that the f-TNT diameter is 1500 nm and Pd nanoparticles range in 20-50 nm. The Pd/f-TNT nanocomposite modified glassy carbon (GC) electrode shows quasi irreversible redox behaviours in cyclic voltammeter. Those Pd/f-TNTs modified electrode is utilized for electrochemical polymerization of o-phenylenediamine in acid medium.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Ryu and W.Y. Choi, Environ. Sci. Technol., 40, 7034 (2006); https://doi.org/10.1021/es0612403.
- X.B. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); https://doi.org/10.1021/cr0500535.
- K.S. Brammer, S. Oh, O.J. Gallagher and S.H. Jin, Nano Lett., 8, 786 (2008); https://doi.org/10.1021/nl072572o.
- X. Zhang, J.H. Pan, A.J. Du, W. Fu, D.D. Sun and J.O. Leckie, Water Res., 43, 1179 (2009); https://doi.org/10.1016/j.watres.2008.12.021.
- E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca and M. Gratzel, Nature, 289, 158 (1981); https://doi.org/10.1038/289158a0.
- S.J. Guo, S.J. Dong and E.K. Wang, Small, 4, 1133 (2008); https://doi.org/10.1002/smll.200800094.
- X.H. Shu, Y. Chen, H.Y. Yuan, S.F. Gao and D. Xiao, Anal. Chem., 79, 3695 (2007); https://doi.org/10.1021/ac0624142.
- S.-J. Bao, C.M. Li, J.-F. Zang, X.-Q. Cui, Y. Qiao and J. Guo, Adv. Funct. Mater., 18, 591 (2008); https://doi.org/10.1002/adfm.200700728.
- J. Lee and W. Choi, J. Phys. Chem. B, 109, 7399 (2005); https://doi.org/10.1021/jp044425+.
- X.D. Wang, D.R.G. Mitchell, K. Prince, A.J. Atanacio and R.A. Caruso, Chem. Mater., 20, 3917 (2008); https://doi.org/10.1021/cm703509f.
- H. Imai, M. Matsuta, K. Shimizu, H. Hirashima and N. Negishi, J. Mater. Chem., 10, 2005 (2000); https://doi.org/10.1039/b004543h.
- H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima, J. Mater. Chem., 9, 2971 (1999); https://doi.org/10.1039/a906005g.
- J. Zhang, S. Wang, Y. Wang, Y. Wang, B. Zhu, H. Xia, X. Guo, S. Zhang, W. Huang and S. Wu, Sens. Actuators B Chem., 135, 610 (2009); https://doi.org/10.1016/j.snb.2008.09.026.
- J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo and S. Wu, Sens. Actuators B Chem., 139, 411 (2009); https://doi.org/10.1016/j.snb.2009.03.014.
- H.-Q. Wu, X.-W. Wei, M.-W. Shao, J.-S. Gu and M.-Z. Qu, Chem. Phys. Lett., 364, 152 (2002); https://doi.org/10.1016/S0009-2614(02)01301-5.
- B.C. Satishkumar, A. Govindaraj, E.M. Vogl, L. Basumallick and C.N.R. Rao, J. Mater. Res., 12, 604 (1997); https://doi.org/10.1557/JMR.1997.0089.
- M. Wang, D. Guo and H. Li, J. Solid State Chem., 178, 1996 (2005); https://doi.org/10.1016/j.jssc.2005.04.006.
- T. Ibusuki and K. Takeuchi, J. Mol. Catal., 88, 93 (1994); https://doi.org/10.1016/0304-5102(93)E0247-E.
- A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); https://doi.org/10.1021/cr00033a003.
- B. Dong, B.-L. He, J. Huang, G.-Y. Gao, Z. Yang and H.-L. Li, J. Power Sources, 175, 266 (2008); https://doi.org/10.1016/j.jpowsour.2007.08.090.
- J. Bai, B. Qi, J.C. Ndamanisha and L. Guo, Micropor. Mesopor. Mater., 119, 193 (2009); https://doi.org/10.1016/j.micromeso.2008.10.030.
- D. Chirizzi and C. Malitesta, Sens. Actuators B Chem., 157, 211 (2011); https://doi.org/10.1016/j.snb.2011.03.051.
- J.W. Long, C.P. Rhodes, A.L. Young and D.R. Rolison, Nano Lett., 3, 1155 (2003); https://doi.org/10.1021/nl0343598.
- A.A. Ariffin, R.D. O’Neill, M.Z.A. Yahya and Z.M. Zain, Int. J. Electrochem. Sci., 7, 10154 (2012).
- V. Branzoi, L. Pilan and F. Branzoi, Mol. Cryst. Liq. Cryst., 416, 61 (2004); https://doi.org/10.1080/15421400490482899.
- S.R. Sivakkumar and R. Saraswathi, J. Appl. Electrochem., 34, 1147 (2004); https://doi.org/10.1007/s10800-004-3302-8.
References
J.H. Ryu and W.Y. Choi, Environ. Sci. Technol., 40, 7034 (2006); https://doi.org/10.1021/es0612403.
X.B. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); https://doi.org/10.1021/cr0500535.
K.S. Brammer, S. Oh, O.J. Gallagher and S.H. Jin, Nano Lett., 8, 786 (2008); https://doi.org/10.1021/nl072572o.
X. Zhang, J.H. Pan, A.J. Du, W. Fu, D.D. Sun and J.O. Leckie, Water Res., 43, 1179 (2009); https://doi.org/10.1016/j.watres.2008.12.021.
E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca and M. Gratzel, Nature, 289, 158 (1981); https://doi.org/10.1038/289158a0.
S.J. Guo, S.J. Dong and E.K. Wang, Small, 4, 1133 (2008); https://doi.org/10.1002/smll.200800094.
X.H. Shu, Y. Chen, H.Y. Yuan, S.F. Gao and D. Xiao, Anal. Chem., 79, 3695 (2007); https://doi.org/10.1021/ac0624142.
S.-J. Bao, C.M. Li, J.-F. Zang, X.-Q. Cui, Y. Qiao and J. Guo, Adv. Funct. Mater., 18, 591 (2008); https://doi.org/10.1002/adfm.200700728.
J. Lee and W. Choi, J. Phys. Chem. B, 109, 7399 (2005); https://doi.org/10.1021/jp044425+.
X.D. Wang, D.R.G. Mitchell, K. Prince, A.J. Atanacio and R.A. Caruso, Chem. Mater., 20, 3917 (2008); https://doi.org/10.1021/cm703509f.
H. Imai, M. Matsuta, K. Shimizu, H. Hirashima and N. Negishi, J. Mater. Chem., 10, 2005 (2000); https://doi.org/10.1039/b004543h.
H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima, J. Mater. Chem., 9, 2971 (1999); https://doi.org/10.1039/a906005g.
J. Zhang, S. Wang, Y. Wang, Y. Wang, B. Zhu, H. Xia, X. Guo, S. Zhang, W. Huang and S. Wu, Sens. Actuators B Chem., 135, 610 (2009); https://doi.org/10.1016/j.snb.2008.09.026.
J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo and S. Wu, Sens. Actuators B Chem., 139, 411 (2009); https://doi.org/10.1016/j.snb.2009.03.014.
H.-Q. Wu, X.-W. Wei, M.-W. Shao, J.-S. Gu and M.-Z. Qu, Chem. Phys. Lett., 364, 152 (2002); https://doi.org/10.1016/S0009-2614(02)01301-5.
B.C. Satishkumar, A. Govindaraj, E.M. Vogl, L. Basumallick and C.N.R. Rao, J. Mater. Res., 12, 604 (1997); https://doi.org/10.1557/JMR.1997.0089.
M. Wang, D. Guo and H. Li, J. Solid State Chem., 178, 1996 (2005); https://doi.org/10.1016/j.jssc.2005.04.006.
T. Ibusuki and K. Takeuchi, J. Mol. Catal., 88, 93 (1994); https://doi.org/10.1016/0304-5102(93)E0247-E.
A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); https://doi.org/10.1021/cr00033a003.
B. Dong, B.-L. He, J. Huang, G.-Y. Gao, Z. Yang and H.-L. Li, J. Power Sources, 175, 266 (2008); https://doi.org/10.1016/j.jpowsour.2007.08.090.
J. Bai, B. Qi, J.C. Ndamanisha and L. Guo, Micropor. Mesopor. Mater., 119, 193 (2009); https://doi.org/10.1016/j.micromeso.2008.10.030.
D. Chirizzi and C. Malitesta, Sens. Actuators B Chem., 157, 211 (2011); https://doi.org/10.1016/j.snb.2011.03.051.
J.W. Long, C.P. Rhodes, A.L. Young and D.R. Rolison, Nano Lett., 3, 1155 (2003); https://doi.org/10.1021/nl0343598.
A.A. Ariffin, R.D. O’Neill, M.Z.A. Yahya and Z.M. Zain, Int. J. Electrochem. Sci., 7, 10154 (2012).
V. Branzoi, L. Pilan and F. Branzoi, Mol. Cryst. Liq. Cryst., 416, 61 (2004); https://doi.org/10.1080/15421400490482899.
S.R. Sivakkumar and R. Saraswathi, J. Appl. Electrochem., 34, 1147 (2004); https://doi.org/10.1007/s10800-004-3302-8.