Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Nd:Y3Ga5O12 Nanopowder for Transparent Ceramic
Corresponding Author(s) : Fanming Zeng
Asian Journal of Chemistry,
Vol. 26 No. 14 (2014): Vol 26 Issue 14
Abstract
Nd:Y3Ga5O12(Nd:YGG) nanopowder was prepared by ammonium hydrogen carbonate co-precipitation method. The X-ray diffraction suggested that the powder became pure phase without impurities after calcined at 900 °C for 4 h. Infrared spectrum indicated that after calcined at 900 °C, the acid radical and hydroxide are all decomposed. SEM showed that the powder reveal good dispersity with the average grain size about 60 nm. Fluorescence spectra showed that the strongest emission peak located at 1062 nm, which is the transmission of 4F3/2-4I11/2 by Nd3+ ion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret and M. Alpers, Appl. Phys. B, 102, 917 (2011); doi:10.1007/s00340-010-4314-1.
- J.G. Li, T. Ikegami, J.H. Lee, T. Mori and Y. Yajima, J. Eur. Ceram. Soc., 20, 2395 (2000); doi:10.1016/S0955-2219(00)00116-3.
- J.G. Li, T. Ikegami, J. H. Lee, T. Mori, and Y. Yajima, J. Mater. Res., 15, 9 (2000).
- L. Wen, X.D. Sun, Z.M. Xiu, S.W. Chen and C.T. Tsai, J. Eur. Ceram. Soc., 24, 2681 (2004); doi:10.1016/j.jeurceramsoc.2003.09.001.
- J.G. Li, T. Ikegami, J.H. Lee and T. Mori, J. Am. Ceram. Soc., 83, 961 (2000); doi:10.1111/j.1151-2916.2000.tb01305.x.
- F.P. Yu, D.R. Yuan, X.L. Duan, S.Y. Guo, X.Q. Wang, X.F. Cheng and L.M. Kong, J. Alloys Comp., 465, 567 (2008); doi:10.1016/j.jallcom.2007.11.008.
- G.J. Zhao, T. Li, X.M. He and J. Xu, Mater. Lett., 56, 1098 (2002); doi:10.1016/S0167-577X(02)00686-9.
- M. Inoue, H. Otsu, H. Kominami and T. Inui, J. Mater. Sci. Lett., 14, 1303 (1995); doi:10.1007/BF01262275.
- X.Y. Tian, X.Y. Zhang, Y.Z. Li and P.Z. Yang, J. Rare Earths, 24, 443 (2006); doi:10.1016/S1002-0721(06)60140-3.
- G.S. Wang, X. Li and Y.L. Geng, J. Alloys Comp., 505, 213 (2010); doi:10.1016/j.jallcom.2010.06.031.
References
J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret and M. Alpers, Appl. Phys. B, 102, 917 (2011); doi:10.1007/s00340-010-4314-1.
J.G. Li, T. Ikegami, J.H. Lee, T. Mori and Y. Yajima, J. Eur. Ceram. Soc., 20, 2395 (2000); doi:10.1016/S0955-2219(00)00116-3.
J.G. Li, T. Ikegami, J. H. Lee, T. Mori, and Y. Yajima, J. Mater. Res., 15, 9 (2000).
L. Wen, X.D. Sun, Z.M. Xiu, S.W. Chen and C.T. Tsai, J. Eur. Ceram. Soc., 24, 2681 (2004); doi:10.1016/j.jeurceramsoc.2003.09.001.
J.G. Li, T. Ikegami, J.H. Lee and T. Mori, J. Am. Ceram. Soc., 83, 961 (2000); doi:10.1111/j.1151-2916.2000.tb01305.x.
F.P. Yu, D.R. Yuan, X.L. Duan, S.Y. Guo, X.Q. Wang, X.F. Cheng and L.M. Kong, J. Alloys Comp., 465, 567 (2008); doi:10.1016/j.jallcom.2007.11.008.
G.J. Zhao, T. Li, X.M. He and J. Xu, Mater. Lett., 56, 1098 (2002); doi:10.1016/S0167-577X(02)00686-9.
M. Inoue, H. Otsu, H. Kominami and T. Inui, J. Mater. Sci. Lett., 14, 1303 (1995); doi:10.1007/BF01262275.
X.Y. Tian, X.Y. Zhang, Y.Z. Li and P.Z. Yang, J. Rare Earths, 24, 443 (2006); doi:10.1016/S1002-0721(06)60140-3.
G.S. Wang, X. Li and Y.L. Geng, J. Alloys Comp., 505, 213 (2010); doi:10.1016/j.jallcom.2010.06.031.