Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Gomphrena serrata Leaf Extract as Corrosion Inhibitor and Reductant for the Synthesis of Copper Nanoparticles
Corresponding Author(s) : S. Vidhya
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Adapting eco-friendly methodologies is the need of the hour in the every field of research. In the present work an investigation on Gomphrena serrata leaves was evaluated as a corrosion inhibitor for the mild steel in HCl medium and as a reductant. The G. serrata as an efficient inhibitor it obeys Langmuir adsorption isotherm and served as anodic type inhibitor. The impedance study confirms the formation of thin film on the metal surface through its Cdl and Rct values. The copper nanoparticles and their derivatives have been used as a medicine to prevent infection, leg ulcers etc. Gomphrena serrata leaves have good medicinal values, to enhance its medicinal properties it was mediated for the synthesis of copper nanoparticles. The CuNPs formation was confirmed by SPR bands at 345 nm by microwave method and at 341 nm by thermostat method. The functional groups present in the G. serrata also present in the FTIR spectra of CuNPs and it confirms the G. serrata was used as a reducing as well as a capping agent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Vieira, H. Mercier, E. Chu and R.C.L. Figueiredo-Ribeiro, ed.: Y.P.S. Bajaj, Gomphrena species (globe Amaranth): In vitro Culture and Production of Secondary Metabolites, In: Biotechnology in Agriculture and Forestry, Springer-Verlag: Berlin, pp. 257-270 (1994).
- A.M. Rahman and M.I.A. Gulshana, Appl. Ecol. Environ. Sci., 2, 54 (2014).
- M. Benabdellah, B. Hammouti, A. Warthan, S.S. Al-Deya, C. Jama, M. Lagrenee and F. Bentiss, Int. J. Electrochem. Sci., 7, 3489 (2012).
- X.J. Raj and N. Rajendran, J. Mater. Eng. Perform., 21, 1363 (2012); https://doi.org/10.1007/s11665-011-0007-0.
- D. Seifzadeh, H. Basharnavaz and A. Bezaatpour, Mater. Chem. Phys., 138, 794 (2013); https://doi.org/10.1016/j.matchemphys.2012.12.063.
- M.A. Quraishi and D. Jamal, Mater. Chem. Phys., 71, 202 (2001); https://doi.org/10.1016/S0254-0584(00)00378-3.
- N. Soltani, N. Tavakkoli, M. Khayatkashani, M.R. Jalali and A. Mosavizade, Corros. Sci., 62, 122 (2012); https://doi.org/10.1016/j.corsci.2012.05.003.
- P.B. Raja, A.K. Qureshi, A. Abdul-Rahim, H. Osman and K. Awang, Corros. Sci., 69, 292 (2013); https://doi.org/10.1016/j.corsci.2012.11.042.
- O.K. Abiola and J.O.E. Otaigbe, Corros. Sci., 51, 2790 (2009); https://doi.org/10.1016/j.corsci.2009.07.006.
- G. Borkow, J. Gabbay, R. Dardik, A.I. Eidelman, Y. Lavie, Y. Grunfeld, S. Ikher, M. Huszar, R.C. Zatcoff and M. Marikovsky, Wound Repair Regen., 18, 266 (2010); https://doi.org/10.1111/j.1524-475X.2010.00573.x.
- V.C. Kalia and R.S. Lal, J. Sci. Ind. Res., 61, 630 (2002).
- A. Harborne, Phytochemical Methods a Guide to Modern Techniques of Plant Analysis, Springer (1998).
- S. Martinez and I. Stern, Appl. Surf. Sci., 199, 83 (2002); https://doi.org/10.1016/S0169-4332(02)00546-9.
- P. Li, J.Y. Lin, K.L. Tan and J.Y. Lee, Electrochim. Acta, 42, 605 (1997); https://doi.org/10.1016/S0013-4686(96)00205-8.
- B.M. Praveen and T.V. Venkatesha, Int. J. Electrochem. Sci., 4, 267 (2009).
- G.N. Mu, X. Li and F. Li, Mater. Chem. Phys., 86, 59 (2004); https://doi.org/10.1016/j.matchemphys.2004.01.041.
- F. Bentiss, M. Lebrini and M. Lagrenée, Corros. Sci., 47, 2915 (2005); https://doi.org/10.1016/j.corsci.2005.05.034.
- M.A. Quraishi and J. Rawat, Mater. Chem. Phys., 70, 95 (2001); https://doi.org/10.1016/S0254-0584(00)00459-4.
- J Buchweishaija, Tanz. J. Sci., 35, 77 (2009).
- R.A. Kumar and M. Ramasamy, Int. J. Curr. Microbiol. Appl. Sci., 3, 395 (2014).
- J. Mohan, Organic Spectroscopy-Principles and Applications, Narosa Publishing House: Delhi, edn 2 (2004).
- E. Dharmaraj, C. Pragathiswaran, P. Govindhan, P.A. Sahayaraj, A.J. Amalraj and V. Dharmalingam, Int. J. Res. Pharm. Chem., 7, 126 (2017).
- S.S. Shivakumar and K.N.S. Mohana, Eur. J. Chem., 3, 426 (2012); https://doi.org/10.5155/eurjchem.3.4.426-432.671.
- M.S. Al-Otaibi, A.M. Al-Mayouf, M. Khan, A.A. Mousa, S.A. AlMazroa and H.Z. Alkhathlan, Arab. J. Chem., 7, 340 (2014); https://doi.org/10.1016/j.arabjc.2012.01.015.
- M. Gopinath, R. Subbaiya, M.M. Selvam and D. Suresh, Int. J. Curr. Microbiol. Appl. Sci., 3, 814 (2014).
- H. Bar, D.H. Bhui, P.G. Sahoo, P. Sarkar, P.S. De and A. Misra, Colloids Surf. A Physicochem. Eng. Asp., 339, 134 (2009); https://doi.org/10.1016/j.colsurfa.2009.02.008.
- M. Vanaja, S. Rajeshkumar, K. Paulkumar, G. Gnanajobitha, C. Malarkodi and G. Annadurai, Adv. Appl. Sci. Res., 4, 50 (2013).
References
C. Vieira, H. Mercier, E. Chu and R.C.L. Figueiredo-Ribeiro, ed.: Y.P.S. Bajaj, Gomphrena species (globe Amaranth): In vitro Culture and Production of Secondary Metabolites, In: Biotechnology in Agriculture and Forestry, Springer-Verlag: Berlin, pp. 257-270 (1994).
A.M. Rahman and M.I.A. Gulshana, Appl. Ecol. Environ. Sci., 2, 54 (2014).
M. Benabdellah, B. Hammouti, A. Warthan, S.S. Al-Deya, C. Jama, M. Lagrenee and F. Bentiss, Int. J. Electrochem. Sci., 7, 3489 (2012).
X.J. Raj and N. Rajendran, J. Mater. Eng. Perform., 21, 1363 (2012); https://doi.org/10.1007/s11665-011-0007-0.
D. Seifzadeh, H. Basharnavaz and A. Bezaatpour, Mater. Chem. Phys., 138, 794 (2013); https://doi.org/10.1016/j.matchemphys.2012.12.063.
M.A. Quraishi and D. Jamal, Mater. Chem. Phys., 71, 202 (2001); https://doi.org/10.1016/S0254-0584(00)00378-3.
N. Soltani, N. Tavakkoli, M. Khayatkashani, M.R. Jalali and A. Mosavizade, Corros. Sci., 62, 122 (2012); https://doi.org/10.1016/j.corsci.2012.05.003.
P.B. Raja, A.K. Qureshi, A. Abdul-Rahim, H. Osman and K. Awang, Corros. Sci., 69, 292 (2013); https://doi.org/10.1016/j.corsci.2012.11.042.
O.K. Abiola and J.O.E. Otaigbe, Corros. Sci., 51, 2790 (2009); https://doi.org/10.1016/j.corsci.2009.07.006.
G. Borkow, J. Gabbay, R. Dardik, A.I. Eidelman, Y. Lavie, Y. Grunfeld, S. Ikher, M. Huszar, R.C. Zatcoff and M. Marikovsky, Wound Repair Regen., 18, 266 (2010); https://doi.org/10.1111/j.1524-475X.2010.00573.x.
V.C. Kalia and R.S. Lal, J. Sci. Ind. Res., 61, 630 (2002).
A. Harborne, Phytochemical Methods a Guide to Modern Techniques of Plant Analysis, Springer (1998).
S. Martinez and I. Stern, Appl. Surf. Sci., 199, 83 (2002); https://doi.org/10.1016/S0169-4332(02)00546-9.
P. Li, J.Y. Lin, K.L. Tan and J.Y. Lee, Electrochim. Acta, 42, 605 (1997); https://doi.org/10.1016/S0013-4686(96)00205-8.
B.M. Praveen and T.V. Venkatesha, Int. J. Electrochem. Sci., 4, 267 (2009).
G.N. Mu, X. Li and F. Li, Mater. Chem. Phys., 86, 59 (2004); https://doi.org/10.1016/j.matchemphys.2004.01.041.
F. Bentiss, M. Lebrini and M. Lagrenée, Corros. Sci., 47, 2915 (2005); https://doi.org/10.1016/j.corsci.2005.05.034.
M.A. Quraishi and J. Rawat, Mater. Chem. Phys., 70, 95 (2001); https://doi.org/10.1016/S0254-0584(00)00459-4.
J Buchweishaija, Tanz. J. Sci., 35, 77 (2009).
R.A. Kumar and M. Ramasamy, Int. J. Curr. Microbiol. Appl. Sci., 3, 395 (2014).
J. Mohan, Organic Spectroscopy-Principles and Applications, Narosa Publishing House: Delhi, edn 2 (2004).
E. Dharmaraj, C. Pragathiswaran, P. Govindhan, P.A. Sahayaraj, A.J. Amalraj and V. Dharmalingam, Int. J. Res. Pharm. Chem., 7, 126 (2017).
S.S. Shivakumar and K.N.S. Mohana, Eur. J. Chem., 3, 426 (2012); https://doi.org/10.5155/eurjchem.3.4.426-432.671.
M.S. Al-Otaibi, A.M. Al-Mayouf, M. Khan, A.A. Mousa, S.A. AlMazroa and H.Z. Alkhathlan, Arab. J. Chem., 7, 340 (2014); https://doi.org/10.1016/j.arabjc.2012.01.015.
M. Gopinath, R. Subbaiya, M.M. Selvam and D. Suresh, Int. J. Curr. Microbiol. Appl. Sci., 3, 814 (2014).
H. Bar, D.H. Bhui, P.G. Sahoo, P. Sarkar, P.S. De and A. Misra, Colloids Surf. A Physicochem. Eng. Asp., 339, 134 (2009); https://doi.org/10.1016/j.colsurfa.2009.02.008.
M. Vanaja, S. Rajeshkumar, K. Paulkumar, G. Gnanajobitha, C. Malarkodi and G. Annadurai, Adv. Appl. Sci. Res., 4, 50 (2013).