Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Partial Molar Volumes and Spectral Studies on Binary Mixtures of p-Chloroacetophenone with Aniline and N-Alkyl Anilines
Corresponding Author(s) : D. Ramachandran
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Ultrasonic velocities (u), viscosities (η) and densities (ρ) were measured for the binary mixtures of p-chloroacetophenone with aniline, N-methylaniline and N,N-dimethylaniline over the whole range of composition at different temperatures (303.15 K to 318.15 K) and at atmospheric pressure 0.1 MPa. Excess molar volume (VE), deviation in viscosity (Δη) and deviation in isentropic compressibility (Δks) have been calculated and fitted to Redlich-Kister polynomial equation to obtain their coefficients and standard deviations. The analyzed viscosity data of binary liquid mixtures were used to test the Grunberg-Nissan, Katti-Chaudari and Hind semi-empirical equations. The FTIR spectral study supports the experimental data to explain the molecular interactions between unlike molecules. Partial molar volumes of binary mixtures were evaluated for better understanding of intermolecular interactions of the above binary mixtures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Díez, J. Largo and J.R. Solana, J. Chem. Phys., 125, 074509 (2006); https://doi.org/10.1063/1.2217944.
- A. Ali, A.K. Nain, V.K. Sharma and S. Ahmad, Indian J. Phys., 758, 519 (2001).
- H. Iloukhani, Z. Rostami and N. Afshari, Phys. Chem. Liq., 47, 360 (2009); https://doi.org/10.1080/00319100701824652.
- M. Gowrisankar, S. Sivarambabu, P. Venkateswarlu and K.S. Kumar, Bull. Korean Chem. Soc., 33, 1686 (2012); https://doi.org/10.5012/bkcs.2012.33.5.1686.
- R. Balaji, M. Gowri Sankar, M. Chandra Sekhar and M. Chandra Shekar, Phys. Chem. Liq., 54, 422 (2015); https://doi.org/10.1080/00319104.2015.1109996.
- M. Swetha Sandhya, P. Biswas, N.R. Vinay, K. Sivakumar and R. Dey, J. Mol. Liq., 278, 219 (2019); https://doi.org/10.1016/j.molliq.2019.01.056.
- D. Rahul, M. Gowri Sankar, M. Chandra Sekhar and D. Ramachandran, J. Therm. Anal. Calorim., 125, 935 (2016); https://doi.org/10.1007/s10973-016-5409-7.
- P. Nagababu, S. Babu, D.F. Santos and M. Gowrisankar, Chem. Data Collect., 20, 100196 (2019); https://doi.org/10.1016/j.cdc.2019.100196.
- M. Raveendra, M. Chandrasekhar, K.C. Reddy, A. Venkatesulu, K. Sivakumar and K.D. Reddy, Fluid Phase Equilib., 462, 85 (2018); https://doi.org/10.1016/j.fluid.2018.01.025.
- A. Shakila, S. Ravikumar, V. Pandiyan and R. Gaba, J. Mol. Liq., 265, 544 (2018); https://doi.org/10.1016/j.molliq.2018.05.130.
- A.R.M. Khan, M.M.H. Rocky, F.I. Chowdhury, M.S. Ahmed and S. Akhtar, J. Mol. Liq., 277, 681 (2019); https://doi.org/10.1016/j.molliq.2018.12.136.
- S.J. Kharat and P.S. Nikam, J. Mol. Liq., 131-132, 81 (2007); https://doi.org/10.1016/j.molliq.2006.08.053.
- B. Nagarjun, A.V. Sarma, G.V. Rama Rao and C. Rambabu, J. Thermodyn., 2013, Article ID 285796 (2013); https://doi.org/10.1155/2013/285796.
- P. Anila, K.R. Reddy, G. Srinivasa Rao, P.V.S. Sairam, D. Ramachandran and C. Rambabu, J. Chem. Thermodyn., 104, 24 (2017); https://doi.org/10.1016/j.jct.2016.09.010.
- Partibha, K. Kumar, S. Gahlyan, M. Rani and V. Bhankar, J. Mol. Liq., 259, 167 (2018); https://doi.org/10.1016/j.molliq.2018.03.025.
- P.V. Rao, T.S. Krishna, M.G. Sankar and K. Ravindhranath, J. Mol. Liq., 222, 873 (2016); https://doi.org/10.1016/j.molliq.2016.07.123.
- G.P. Dubey, S. Rani and H. Kumar, J. Chem. Thermodyn., 132, 1 (2019); https://doi.org/10.1016/j.jct.2018.12.012.
- S.M.C. Sousa, E.F.G. Barbosa and I.M.S. Lampreia, J. Chem. Thermodyn., 56, 60 (2013); https://doi.org/10.1016/j.jct.2012.07.012.
- M. Gowrisankar, P. Venkateswarlu, K. Siva Kumar and S. Sivarambabu, J. Mol. Liq., 173, 172 (2012); https://doi.org/10.1016/j.molliq.2012.06.010.
- S.J. Tangeda, S. Boodida and S. Nallani, J. Chem. Thermodyn., 38, 1438 (2006); https://doi.org/10.1016/j.jct.2006.01.009.
- T.S. Jyostna and N. Satyanarayana, Indian J. Chem. Technol., 13, 71 (2006).
- S.J. Tangeda and S. Nallani, J. Chem. Eng. Data, 50, 89 (2005); https://doi.org/10.1021/je040008e.
- R. Palepu, J. Oliver and D. Campbell, J. Chem. Eng. Data, 30, 355 (1985); https://doi.org/10.1021/je00041a036.
- M. Srilatha, D. Chinnarao, G.V. Gaurav and C.V. Padmarao, Chem. Sci. Transac., 5, 223 (2016); https://doi.org/10.7598/cst2016.1138.
- I. Alonso, V. Alonso, I. Mozo, I.G. de la Fuente, J.A. González and J.C. Cobos, J. Chem. Eng. Data, 55, 2505 (2010); https://doi.org/10.1021/je900874z.
- L. Su and H. Wang, J. Chem. Thermodyn., 41, 315 (2009); https://doi.org/10.1016/j.jct.2008.08.013.
- A.K. Nain, Fluid Phase Equilib., 259, 218 (2007); https://doi.org/10.1016/j.fluid.2007.07.016.
- M. Gowrisankar, K. Venkateswarlu, S. Sivakumar and S. Sivarambabu, J. Solution Chem., 42, 916 (2013); https://doi.org/10.1007/s10953-013-0003-0.
- S.L. Oswal, V. Pandiyan, B. Krishnakumar and P. Vasantharani, Thermochim. Acta, 507-508, 27 (2010); https://doi.org/10.1016/j.tca.2010.04.025.
- G. Korosi and E.S.Z. Kovats, J. Chem. Eng. Data, 26, 323 (1981); https://doi.org/10.1021/je00025a032.
- V.S. Rao, T.V. Krishna, T.M. Mohan and P.M. Rao, J. Chem. Thermodyn., 100, 165 (2016); https://doi.org/10.1016/j.jct.2016.04.024.
- M. Aftabuzzaman, M.M. Islam, Nasiruddin, F.R. Rima, M.N. Islam and M.A. Ali, J. Chem. Thermodyn., 96, 181 (2016); https://doi.org/10.1016/j.jct.2015.12.030.
- I. Alonso, I. Mozo, I.G. de la Fuente, J.A. González and J.C. Cobos, J. Chem. Eng. Data, 55, 5400 (2010); https://doi.org/10.1021/je100472t.
- S. Kumar and P. Jeevanandham, J. Mol. Liq., 174, 34 (2012); https://doi.org/10.1016/j.molliq.2012.07.025.
- V. Pandiyan, S.L. Oswal and P. Vasantharani, Thermochim. Acta, 518, 36 (2011); https://doi.org/10.1016/j.tca.2011.02.004.
- V.K. Sharma, S. Solanki, S. Bhagour and D. Sharma, J. Mol. Liq., 188, 258 (2013); https://doi.org/10.1016/j.molliq.2013.09.024.
- P. Vasundhara, C. Narasimha Rao, L. Venkatramana, K. Sivakumar, P. Venkateswarlu and R.L. Gardas, J. Mol. Liq., 202, 158 (2015); https://doi.org/10.1016/j.molliq.2014.12.024.
- N.G. Devi, N.V.N.B. Srinivasa Rao, M. Radha Sirija and D. Ramachandran, Korean J. Chem. Eng., 35, 1488 (2018); https://doi.org/10.1007/s11814-018-0053-5.
- M. Kondaiah, D. Sravana Kumar, K. Sreekanth and D. Krishna Rao, J. Chem. Eng. Data, 57, 352 (2012); https://doi.org/10.1021/je200862b.
- M. Gowrisankar, P. Venkateswarlu, K. Siva Kumar and S. Sivarambabu, J. Ind. Eng. Chem., 20, 405 (2014); https://doi.org/10.1016/j.jiec.2013.04.035.
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents Physical Properties and Method of Purifications, Wiley Interscience: New York, vol. 2 (1986).
- A. Valtz, M. Teodorescu, I. Wichterle and D. Richon, Fluid Phase Equilib., 215, 129 (2004); https://doi.org/10.1016/S0378-3812(03)00364-9.
- M.H. Kabir, M.A. Motin and M.E. Huque, Phys. Chem. Liq., 42, 279 (2004); https://doi.org/10.1080/0031910042000205346.
- P. Venkatesu and M.V.P. Rao, J. Chem. Eng. Data, 41, 1059 (1996); https://doi.org/10.1021/je9600919.
- B. Hawrylak, K. Gracie and R. Palepu, J. Solution Chem., 27, 17 (1998); https://doi.org/10.1023/A:1022636511542.
- P.K. Pandey, V.K. Pandey, A. Awasthi, A.K. Nain and A. Awasthi, Thermochim. Acta, 586, 58 (2014); https://doi.org/10.1016/j.tca.2014.03.038.
- M.I. Aralaguppi, C.V. Jadar, T.M. Aminabhavi, J.D. Ortego and S.C. Mehrotra, J. Chem. Eng. Data, 42, 301 (1997); https://doi.org/10.1021/je960148r.
- R.J. Fort and W.R. Moore, Trans. Faraday Soc., 61, 2102 (1965); https://doi.org/10.1039/tf9656102102.
- R.J. Fort and W.R. Moore, Trans. Faraday Soc., 62, 1112 (1966); https://doi.org/10.1039/tf9666201112.
- O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
- L. Grunberg and A.H. Nissan, Nature, 164, 799 (1949); https://doi.org/10.1038/164799b0.
- P.K. Katti and M.H. Chaudhri, J. Chem. Eng. Data, 9, 442 (1964); https://doi.org/10.1021/je60022a047.
- R.K. Hind, E. McLaughlin and A. Ubbelohde, Trans. Faraday Soc., 56, 328 (1960); https://doi.org/10.1039/tf9605600328.
References
A. Díez, J. Largo and J.R. Solana, J. Chem. Phys., 125, 074509 (2006); https://doi.org/10.1063/1.2217944.
A. Ali, A.K. Nain, V.K. Sharma and S. Ahmad, Indian J. Phys., 758, 519 (2001).
H. Iloukhani, Z. Rostami and N. Afshari, Phys. Chem. Liq., 47, 360 (2009); https://doi.org/10.1080/00319100701824652.
M. Gowrisankar, S. Sivarambabu, P. Venkateswarlu and K.S. Kumar, Bull. Korean Chem. Soc., 33, 1686 (2012); https://doi.org/10.5012/bkcs.2012.33.5.1686.
R. Balaji, M. Gowri Sankar, M. Chandra Sekhar and M. Chandra Shekar, Phys. Chem. Liq., 54, 422 (2015); https://doi.org/10.1080/00319104.2015.1109996.
M. Swetha Sandhya, P. Biswas, N.R. Vinay, K. Sivakumar and R. Dey, J. Mol. Liq., 278, 219 (2019); https://doi.org/10.1016/j.molliq.2019.01.056.
D. Rahul, M. Gowri Sankar, M. Chandra Sekhar and D. Ramachandran, J. Therm. Anal. Calorim., 125, 935 (2016); https://doi.org/10.1007/s10973-016-5409-7.
P. Nagababu, S. Babu, D.F. Santos and M. Gowrisankar, Chem. Data Collect., 20, 100196 (2019); https://doi.org/10.1016/j.cdc.2019.100196.
M. Raveendra, M. Chandrasekhar, K.C. Reddy, A. Venkatesulu, K. Sivakumar and K.D. Reddy, Fluid Phase Equilib., 462, 85 (2018); https://doi.org/10.1016/j.fluid.2018.01.025.
A. Shakila, S. Ravikumar, V. Pandiyan and R. Gaba, J. Mol. Liq., 265, 544 (2018); https://doi.org/10.1016/j.molliq.2018.05.130.
A.R.M. Khan, M.M.H. Rocky, F.I. Chowdhury, M.S. Ahmed and S. Akhtar, J. Mol. Liq., 277, 681 (2019); https://doi.org/10.1016/j.molliq.2018.12.136.
S.J. Kharat and P.S. Nikam, J. Mol. Liq., 131-132, 81 (2007); https://doi.org/10.1016/j.molliq.2006.08.053.
B. Nagarjun, A.V. Sarma, G.V. Rama Rao and C. Rambabu, J. Thermodyn., 2013, Article ID 285796 (2013); https://doi.org/10.1155/2013/285796.
P. Anila, K.R. Reddy, G. Srinivasa Rao, P.V.S. Sairam, D. Ramachandran and C. Rambabu, J. Chem. Thermodyn., 104, 24 (2017); https://doi.org/10.1016/j.jct.2016.09.010.
Partibha, K. Kumar, S. Gahlyan, M. Rani and V. Bhankar, J. Mol. Liq., 259, 167 (2018); https://doi.org/10.1016/j.molliq.2018.03.025.
P.V. Rao, T.S. Krishna, M.G. Sankar and K. Ravindhranath, J. Mol. Liq., 222, 873 (2016); https://doi.org/10.1016/j.molliq.2016.07.123.
G.P. Dubey, S. Rani and H. Kumar, J. Chem. Thermodyn., 132, 1 (2019); https://doi.org/10.1016/j.jct.2018.12.012.
S.M.C. Sousa, E.F.G. Barbosa and I.M.S. Lampreia, J. Chem. Thermodyn., 56, 60 (2013); https://doi.org/10.1016/j.jct.2012.07.012.
M. Gowrisankar, P. Venkateswarlu, K. Siva Kumar and S. Sivarambabu, J. Mol. Liq., 173, 172 (2012); https://doi.org/10.1016/j.molliq.2012.06.010.
S.J. Tangeda, S. Boodida and S. Nallani, J. Chem. Thermodyn., 38, 1438 (2006); https://doi.org/10.1016/j.jct.2006.01.009.
T.S. Jyostna and N. Satyanarayana, Indian J. Chem. Technol., 13, 71 (2006).
S.J. Tangeda and S. Nallani, J. Chem. Eng. Data, 50, 89 (2005); https://doi.org/10.1021/je040008e.
R. Palepu, J. Oliver and D. Campbell, J. Chem. Eng. Data, 30, 355 (1985); https://doi.org/10.1021/je00041a036.
M. Srilatha, D. Chinnarao, G.V. Gaurav and C.V. Padmarao, Chem. Sci. Transac., 5, 223 (2016); https://doi.org/10.7598/cst2016.1138.
I. Alonso, V. Alonso, I. Mozo, I.G. de la Fuente, J.A. González and J.C. Cobos, J. Chem. Eng. Data, 55, 2505 (2010); https://doi.org/10.1021/je900874z.
L. Su and H. Wang, J. Chem. Thermodyn., 41, 315 (2009); https://doi.org/10.1016/j.jct.2008.08.013.
A.K. Nain, Fluid Phase Equilib., 259, 218 (2007); https://doi.org/10.1016/j.fluid.2007.07.016.
M. Gowrisankar, K. Venkateswarlu, S. Sivakumar and S. Sivarambabu, J. Solution Chem., 42, 916 (2013); https://doi.org/10.1007/s10953-013-0003-0.
S.L. Oswal, V. Pandiyan, B. Krishnakumar and P. Vasantharani, Thermochim. Acta, 507-508, 27 (2010); https://doi.org/10.1016/j.tca.2010.04.025.
G. Korosi and E.S.Z. Kovats, J. Chem. Eng. Data, 26, 323 (1981); https://doi.org/10.1021/je00025a032.
V.S. Rao, T.V. Krishna, T.M. Mohan and P.M. Rao, J. Chem. Thermodyn., 100, 165 (2016); https://doi.org/10.1016/j.jct.2016.04.024.
M. Aftabuzzaman, M.M. Islam, Nasiruddin, F.R. Rima, M.N. Islam and M.A. Ali, J. Chem. Thermodyn., 96, 181 (2016); https://doi.org/10.1016/j.jct.2015.12.030.
I. Alonso, I. Mozo, I.G. de la Fuente, J.A. González and J.C. Cobos, J. Chem. Eng. Data, 55, 5400 (2010); https://doi.org/10.1021/je100472t.
S. Kumar and P. Jeevanandham, J. Mol. Liq., 174, 34 (2012); https://doi.org/10.1016/j.molliq.2012.07.025.
V. Pandiyan, S.L. Oswal and P. Vasantharani, Thermochim. Acta, 518, 36 (2011); https://doi.org/10.1016/j.tca.2011.02.004.
V.K. Sharma, S. Solanki, S. Bhagour and D. Sharma, J. Mol. Liq., 188, 258 (2013); https://doi.org/10.1016/j.molliq.2013.09.024.
P. Vasundhara, C. Narasimha Rao, L. Venkatramana, K. Sivakumar, P. Venkateswarlu and R.L. Gardas, J. Mol. Liq., 202, 158 (2015); https://doi.org/10.1016/j.molliq.2014.12.024.
N.G. Devi, N.V.N.B. Srinivasa Rao, M. Radha Sirija and D. Ramachandran, Korean J. Chem. Eng., 35, 1488 (2018); https://doi.org/10.1007/s11814-018-0053-5.
M. Kondaiah, D. Sravana Kumar, K. Sreekanth and D. Krishna Rao, J. Chem. Eng. Data, 57, 352 (2012); https://doi.org/10.1021/je200862b.
M. Gowrisankar, P. Venkateswarlu, K. Siva Kumar and S. Sivarambabu, J. Ind. Eng. Chem., 20, 405 (2014); https://doi.org/10.1016/j.jiec.2013.04.035.
J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents Physical Properties and Method of Purifications, Wiley Interscience: New York, vol. 2 (1986).
A. Valtz, M. Teodorescu, I. Wichterle and D. Richon, Fluid Phase Equilib., 215, 129 (2004); https://doi.org/10.1016/S0378-3812(03)00364-9.
M.H. Kabir, M.A. Motin and M.E. Huque, Phys. Chem. Liq., 42, 279 (2004); https://doi.org/10.1080/0031910042000205346.
P. Venkatesu and M.V.P. Rao, J. Chem. Eng. Data, 41, 1059 (1996); https://doi.org/10.1021/je9600919.
B. Hawrylak, K. Gracie and R. Palepu, J. Solution Chem., 27, 17 (1998); https://doi.org/10.1023/A:1022636511542.
P.K. Pandey, V.K. Pandey, A. Awasthi, A.K. Nain and A. Awasthi, Thermochim. Acta, 586, 58 (2014); https://doi.org/10.1016/j.tca.2014.03.038.
M.I. Aralaguppi, C.V. Jadar, T.M. Aminabhavi, J.D. Ortego and S.C. Mehrotra, J. Chem. Eng. Data, 42, 301 (1997); https://doi.org/10.1021/je960148r.
R.J. Fort and W.R. Moore, Trans. Faraday Soc., 61, 2102 (1965); https://doi.org/10.1039/tf9656102102.
R.J. Fort and W.R. Moore, Trans. Faraday Soc., 62, 1112 (1966); https://doi.org/10.1039/tf9666201112.
O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
L. Grunberg and A.H. Nissan, Nature, 164, 799 (1949); https://doi.org/10.1038/164799b0.
P.K. Katti and M.H. Chaudhri, J. Chem. Eng. Data, 9, 442 (1964); https://doi.org/10.1021/je60022a047.
R.K. Hind, E. McLaughlin and A. Ubbelohde, Trans. Faraday Soc., 56, 328 (1960); https://doi.org/10.1039/tf9605600328.