Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Suzuki Reaction for the Synthesis of New Derivatives of 4-Chloro-3,5-Dimethyl Phenol and their in vitro Antibacterial Screening
Corresponding Author(s) : N.N.A. Jafar
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
Many derivatives of 4-chloro-3,5-dimethylphenol have been synthesized using Suzuki reaction and characterized by IR, 1H NMR and micro elemental analysis. These compounds also tested in terms of their antibacterial properties against Staphylococcus aureus, Escherichia coli and Proteus mirabilis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Smidt, W. Hafner, R. Jira, J. Sedlmeier, R. Sieber, R. Rüttinger and H. Kojer, Angew. Chem., 71, 176 (1959); https://doi.org/10.1002/ange.19590710503.
- R.F. Heck, J. Am. Chem. Soc., 90, 5518 (1968); https://doi.org/10.1021/ja01022a034.
- R.F. Heck, J. Am. Chem. Soc., 91, 6707 (1969); https://doi.org/10.1021/ja01052a029.
- I. Moritanl and Y. Fujiwara, Tetrahedron Lett., 8, 1119 (1967); https://doi.org/10.1016/S0040-4039(00)90648-8.
- M.S. Kharasch and E.K. Fields, J. Am. Chem. Soc., 63, 2316 (1941); https://doi.org/10.1021/ja01854a006.
- H. Gilman, R.G. Jones and L.A. Woods, J. Org. Chem., 17, 1630 (1952); https://doi.org/10.1021/jo50012a009.
- M. Tamura and J.K. Kochi, J. Am. Chem. Soc., 93, 1487 (1971); https://doi.org/10.1021/ja00735a030.
- R.J.P. Corriu and J.P. Masse, Chem. Commun., 3, 144 (1972); https://doi.org/10.1039/c3972000144a.
- K. Tamao, K. Sumitani and M. Kumada, J. Am. Chem. Soc., 94, 4374 (1972); https://doi.org/10.1021/ja00767a075.
- M. Yamamura, I. Moritani and S.I. Murahashi, J. Organomet. Chem., 91, C39 (1975); https://doi.org/10.1016/S0022-328X(00)89636-9.
- E.I. Negishi and S. Baba, Chem. Commun., 15, 596 (1976); https://doi.org/10.1039/C3976000596B.
- E.I. Negishi, A.O. King and N. Okukado, J. Org. Chem., 42, 1821 (1977); https://doi.org/10.1021/jo00430a041.
- J.F. Fauvarque and A. Jutand, J. Organomet. Chem., 132, C17 (1977); https://doi.org/10.1016/S0022-328X(00)91739-X.
- N. Miyaura, K. Yamada and A. Suzuki, Tetrahedron Lett., 20, 3437 (1979); https://doi.org/10.1016/S0040-4039(01)95429-2.
- N. Miyaura and A. Suzuki, J. Chem. Soc. Chem. Commun., 19, 866 (1979); https://doi.org/10.1039/c39790000866.
- A. Bahl, W. Grahn, S. Stadler, F. Feiner, G. Bourhill, C. Brauchle, A. Reisner and P.G. Jones, Angew. Chem. Int. Ed. Engl., 34, 1485 (1995); https://doi.org/10.1002/anie.199514851.
- M. Sabat and C.R. Johnson, Org. Lett., 2, 1089 (2000); https://doi.org/10.1021/ol005645i.
- G. Bringmann, R. Gotz, P.A. Keller, R. Walter, M.R. Boyd, F. Lang, A. Garcia, J.J. Walsh, I. Tellitu, K.V. Bhaskar and T.R. Kelly, J. Org. Chem., 63, 1090 (1998); https://doi.org/10.1021/jo971495m.
- N.N.A. Jafar, N.A. Al-Masoudi, S.J. Baqir, P. Leyssen and C. Pannecouque, Antivir. Chem. Chemother., 23, 103 (2013); https://doi.org/10.3851/IMP2400.
- K.C. Nicolaou, J.M. Ramanjulu, S. Natarajan, S. Brase and F. Rubsam, Chem Commun., 1899 (1997); https://doi.org/10.1039/A705050J.
- F. Cheng and A. Adronov, Chem. Mater., 18, 5389 (2006); https://doi.org/10.1021/cm061736j.
- N.A. Al-Masoudia, B.A. Saeed, D.S. Alia, R.S. Alias, N.N.A. Jaffer and C. Pannecouque, Chem. Biol. Interface, 6, 1 (2016).
- N.N.A. Jafar, I.M.A. Mahdi, M.H. Hadwan and A.A. Alameri, J. Young Pharm., 9, 463 (2017); https://doi.org/10.5530/jyp.2017.9.91.
- L.P. Schenck, M.G. Surette and D.M. Bowdish, FEBS Lett., 590, 3705 (2016); https://doi.org/10.1002/1873-3468.12455.
- U. Wollina, Clin. Cosmet. Investig. Dermatol., 10, 51 (2017); https://doi.org/10.2147/CCID.S130013.
- G. Garrity, Don J. Brenner, N.R. Krieg, J.R. Staley, Bergey’s Manual® of Systematic Bacteriology, Williams & Wilkins: New Delhi, India, p. 1108 (2005).
- https://www.who.int/en/news-room/fact-sheets/detail/e-coli.
- J.N. Schaffer and M.M. Pearson, Microbiol. Spectr., 3, 1 (2015); https://doi.org/10.1128/microbiolspec.UTI-0017-2013.
- G.L. Huang, T.M. Huang and J.T. Chen, Inorg. Chem., 31, 4034 (1992); https://doi.org/10.1021/ic00046a004.
- K.C. Nicolaou, P.G. Bulger and D. Sarlah, Angew. Chem. Int. Ed., 44, 4442 (2005); https://doi.org/10.1002/anie.200500368.
- K. Vikse, T. Naka, J.S. McIndoe, M. Besora and F. Maseras, ChemCatChem, 5, 3604 (2013); https://doi.org/10.1002/cctc.201300723.
References
J. Smidt, W. Hafner, R. Jira, J. Sedlmeier, R. Sieber, R. Rüttinger and H. Kojer, Angew. Chem., 71, 176 (1959); https://doi.org/10.1002/ange.19590710503.
R.F. Heck, J. Am. Chem. Soc., 90, 5518 (1968); https://doi.org/10.1021/ja01022a034.
R.F. Heck, J. Am. Chem. Soc., 91, 6707 (1969); https://doi.org/10.1021/ja01052a029.
I. Moritanl and Y. Fujiwara, Tetrahedron Lett., 8, 1119 (1967); https://doi.org/10.1016/S0040-4039(00)90648-8.
M.S. Kharasch and E.K. Fields, J. Am. Chem. Soc., 63, 2316 (1941); https://doi.org/10.1021/ja01854a006.
H. Gilman, R.G. Jones and L.A. Woods, J. Org. Chem., 17, 1630 (1952); https://doi.org/10.1021/jo50012a009.
M. Tamura and J.K. Kochi, J. Am. Chem. Soc., 93, 1487 (1971); https://doi.org/10.1021/ja00735a030.
R.J.P. Corriu and J.P. Masse, Chem. Commun., 3, 144 (1972); https://doi.org/10.1039/c3972000144a.
K. Tamao, K. Sumitani and M. Kumada, J. Am. Chem. Soc., 94, 4374 (1972); https://doi.org/10.1021/ja00767a075.
M. Yamamura, I. Moritani and S.I. Murahashi, J. Organomet. Chem., 91, C39 (1975); https://doi.org/10.1016/S0022-328X(00)89636-9.
E.I. Negishi and S. Baba, Chem. Commun., 15, 596 (1976); https://doi.org/10.1039/C3976000596B.
E.I. Negishi, A.O. King and N. Okukado, J. Org. Chem., 42, 1821 (1977); https://doi.org/10.1021/jo00430a041.
J.F. Fauvarque and A. Jutand, J. Organomet. Chem., 132, C17 (1977); https://doi.org/10.1016/S0022-328X(00)91739-X.
N. Miyaura, K. Yamada and A. Suzuki, Tetrahedron Lett., 20, 3437 (1979); https://doi.org/10.1016/S0040-4039(01)95429-2.
N. Miyaura and A. Suzuki, J. Chem. Soc. Chem. Commun., 19, 866 (1979); https://doi.org/10.1039/c39790000866.
A. Bahl, W. Grahn, S. Stadler, F. Feiner, G. Bourhill, C. Brauchle, A. Reisner and P.G. Jones, Angew. Chem. Int. Ed. Engl., 34, 1485 (1995); https://doi.org/10.1002/anie.199514851.
M. Sabat and C.R. Johnson, Org. Lett., 2, 1089 (2000); https://doi.org/10.1021/ol005645i.
G. Bringmann, R. Gotz, P.A. Keller, R. Walter, M.R. Boyd, F. Lang, A. Garcia, J.J. Walsh, I. Tellitu, K.V. Bhaskar and T.R. Kelly, J. Org. Chem., 63, 1090 (1998); https://doi.org/10.1021/jo971495m.
N.N.A. Jafar, N.A. Al-Masoudi, S.J. Baqir, P. Leyssen and C. Pannecouque, Antivir. Chem. Chemother., 23, 103 (2013); https://doi.org/10.3851/IMP2400.
K.C. Nicolaou, J.M. Ramanjulu, S. Natarajan, S. Brase and F. Rubsam, Chem Commun., 1899 (1997); https://doi.org/10.1039/A705050J.
F. Cheng and A. Adronov, Chem. Mater., 18, 5389 (2006); https://doi.org/10.1021/cm061736j.
N.A. Al-Masoudia, B.A. Saeed, D.S. Alia, R.S. Alias, N.N.A. Jaffer and C. Pannecouque, Chem. Biol. Interface, 6, 1 (2016).
N.N.A. Jafar, I.M.A. Mahdi, M.H. Hadwan and A.A. Alameri, J. Young Pharm., 9, 463 (2017); https://doi.org/10.5530/jyp.2017.9.91.
L.P. Schenck, M.G. Surette and D.M. Bowdish, FEBS Lett., 590, 3705 (2016); https://doi.org/10.1002/1873-3468.12455.
U. Wollina, Clin. Cosmet. Investig. Dermatol., 10, 51 (2017); https://doi.org/10.2147/CCID.S130013.
G. Garrity, Don J. Brenner, N.R. Krieg, J.R. Staley, Bergey’s Manual® of Systematic Bacteriology, Williams & Wilkins: New Delhi, India, p. 1108 (2005).
https://www.who.int/en/news-room/fact-sheets/detail/e-coli.
J.N. Schaffer and M.M. Pearson, Microbiol. Spectr., 3, 1 (2015); https://doi.org/10.1128/microbiolspec.UTI-0017-2013.
G.L. Huang, T.M. Huang and J.T. Chen, Inorg. Chem., 31, 4034 (1992); https://doi.org/10.1021/ic00046a004.
K.C. Nicolaou, P.G. Bulger and D. Sarlah, Angew. Chem. Int. Ed., 44, 4442 (2005); https://doi.org/10.1002/anie.200500368.
K. Vikse, T. Naka, J.S. McIndoe, M. Besora and F. Maseras, ChemCatChem, 5, 3604 (2013); https://doi.org/10.1002/cctc.201300723.