Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Comparative Study of Molecular Interactions of Three Tetracycline Derivatives with Aqueous β-Cyclodextrin Solution at Different Temperatures
Corresponding Author(s) : Shashi Kant Sharma
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
A comparative study of complexation behaviour of three tetracycline derivatives viz. doxycycline hydrochloride, oxytetracycline hydrochloride and minocycline hydrochloride with β-cyclodextrin (β-CD) has been done with the help of various thermodynamic and spectroscopic methods. Density (ρ) and conductivity measurements have been carried out for binary drug/water and ternary drug/water/(β-CD) systems at three different temperature viz. 305.15, 310.15 and 315.15 K. The interactions of these tetracycline derivatives with β-cyclodextrin in aqueous solutions are further studied by means of fluorescence spectroscopy and UV-visible spectroscopy. From the measured density (ρ) data, partial molar volume (Φ°ν), partial molar volume expansibility (j°e), Hepler′s constant (∂2j°ν / ∂T2)P and partial molar volume of transfer (Δj°ν) have been obtained. From the conductance studies, the energetically favourable interactions are interpreted in the form of free energy change (ΔG) and the apparent association constant (Ka) was estimated from the fluorescence data.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.S. Gomes and M.H. Fernandes, Arch. Oral Biol., 52, 251 (2007); https://doi.org/10.1016/j.archoralbio.2006.10.005.
- I. Chopra and M. Roberts, Microbiol. Mol. Biol. Rev., 65, 232 (2001); https://doi.org/10.1128/MMBR.65.2.232-260.2001.
- M.O. Griffin, E. Fricovsky, G. Ceballos and F. Villarreal, Am. J. Physiol. Cell Physiol., 299, 539 (2010); https://doi.org/10.1152/ajpcell.00047.2010.
- T. Loftsson and M.E. Brewster, J. Pharm. Pharmacol., 63, 1119 (2011); https://doi.org/10.1111/j.2042-7158.2011.01279.x.
- A.L. Laza-Knoerr, R. Gref and P. Couvreur, J. Drug Target., 18, 645 (2010); https://doi.org/10.3109/10611861003622552.
- N. Zafar, H. Fessi and A. Elaissari, Int. J. Pharm., 461, 351 (2014); https://doi.org/10.1016/j.ijpharm.2013.12.004.
- C. Schonbeck, P. Westh and R. Holm, J. Phys. Chem. B, 118, 10120 (2014); https://doi.org/10.1021/jp506001j.
- D. Bongiorno, L. Ceraulo, A. Mele, W. Panzeri, A. Selva and V. Turco Liveri, Carbohydr. Res., 337, 743 (2002); https://doi.org/10.1016/S0008-6215(02)00049-6.
- N.B. Li, H.Q. Luo and S. Liu, Talanta, 66, 495 (2005); https://doi.org/10.1016/j.talanta.2004.11.022.
- K. Cal and K. Centkowska, Eur. J. Pharm. Biopharm., 68, 467 (2008); https://doi.org/10.1016/j.ejpb.2007.08.002.
- T. Loftsson and M.E. Brewster, J. Pharm. Sci., 85, 1017 (1996); https://doi.org/10.1021/js950534b.
- S.S. Jambhekar and P. Breen, Drug Discov. Today, 21, 363 (2016); https://doi.org/10.1016/j.drudis.2015.11.016.
- T. Loftsson, D. Hreinsdottir and M. Masson, Int. J. Pharm., 302, 18 (2005); https://doi.org/10.1016/j.ijpharm.2005.05.042.
- S.K. Mehta, K.K. Bhasin and S. Dham, J. Colloid Interface Sci., 326, 374 (2008); https://doi.org/10.1016/j.jcis.2008.06.039.
- A. Orstan and J.B.A. Ross, J. Phys. Chem., 91, 2739 (1987); https://doi.org/10.1021/j100295a019.
- Riyazuddeen and S. Afrin, J. Chem. Eng. Data, 55, 2643 (2010); https://doi.org/10.1021/je900909s.
- Riyazuddeen and T. Altamash, J. Chem. Eng. Data, 54, 3133 (2009); https://doi.org/10.1021/je900199j.
- M.J. Iqbal and M.A. Chaudhry, J. Chem. Thermodyn., 41, 221 (2009); https://doi.org/10.1016/j.jct.2008.09.016.
- A. Pal and N. Chauhan, J. Mol. Liq., 169, 163 (2012); https://doi.org/10.1016/j.molliq.2012.02.003.
- S. Kant and S. Kumar, J. Chem. Eng. Data, 58, 1294 (2013); https://doi.org/10.1021/je301362j.
- S. Kant, A. Kumar and S. Kumar, J. Mol. Liq., 150, 39 (2009); https://doi.org/10.1016/j.molliq.2009.09.010.
- L.G. Hepler, Can. J. Chem., 47, 4613 (1969); https://doi.org/10.1139/v69-762.
- S. Li and W. Purdy, J. Chem. Rev., 92, 1457 (1992); https://doi.org/10.1021/cr00014a009.
- R.P. Frankewich, K.N. Thimmaiah and W.L. Hinze, J. Anal. Chem., 63, 2924 (1991); https://doi.org/10.1021/ac00024a023.
- J.A. Arancibia and G.M. Escandar, Analyst, 124, 1833 (1999); https://doi.org/10.1039/A906719A.
- G.C. Catena and F.V. Bright, J. Anal. Chem., 61, 905 (1989); https://doi.org/10.1021/ac00183a024.
- F.V. Bright, T.L. Keimig and L.B. Mcgown, Anal. Chim. Acta, 175, 189 (1985); https://doi.org/10.1016/S0003-2670(00)82731-2.
- C. Jianbin, C. Liang, X. Hao and M. Dongpin, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 2809 (2002); https://doi.org/10.1016/S1386-1425(02)00078-1.
References
P.S. Gomes and M.H. Fernandes, Arch. Oral Biol., 52, 251 (2007); https://doi.org/10.1016/j.archoralbio.2006.10.005.
I. Chopra and M. Roberts, Microbiol. Mol. Biol. Rev., 65, 232 (2001); https://doi.org/10.1128/MMBR.65.2.232-260.2001.
M.O. Griffin, E. Fricovsky, G. Ceballos and F. Villarreal, Am. J. Physiol. Cell Physiol., 299, 539 (2010); https://doi.org/10.1152/ajpcell.00047.2010.
T. Loftsson and M.E. Brewster, J. Pharm. Pharmacol., 63, 1119 (2011); https://doi.org/10.1111/j.2042-7158.2011.01279.x.
A.L. Laza-Knoerr, R. Gref and P. Couvreur, J. Drug Target., 18, 645 (2010); https://doi.org/10.3109/10611861003622552.
N. Zafar, H. Fessi and A. Elaissari, Int. J. Pharm., 461, 351 (2014); https://doi.org/10.1016/j.ijpharm.2013.12.004.
C. Schonbeck, P. Westh and R. Holm, J. Phys. Chem. B, 118, 10120 (2014); https://doi.org/10.1021/jp506001j.
D. Bongiorno, L. Ceraulo, A. Mele, W. Panzeri, A. Selva and V. Turco Liveri, Carbohydr. Res., 337, 743 (2002); https://doi.org/10.1016/S0008-6215(02)00049-6.
N.B. Li, H.Q. Luo and S. Liu, Talanta, 66, 495 (2005); https://doi.org/10.1016/j.talanta.2004.11.022.
K. Cal and K. Centkowska, Eur. J. Pharm. Biopharm., 68, 467 (2008); https://doi.org/10.1016/j.ejpb.2007.08.002.
T. Loftsson and M.E. Brewster, J. Pharm. Sci., 85, 1017 (1996); https://doi.org/10.1021/js950534b.
S.S. Jambhekar and P. Breen, Drug Discov. Today, 21, 363 (2016); https://doi.org/10.1016/j.drudis.2015.11.016.
T. Loftsson, D. Hreinsdottir and M. Masson, Int. J. Pharm., 302, 18 (2005); https://doi.org/10.1016/j.ijpharm.2005.05.042.
S.K. Mehta, K.K. Bhasin and S. Dham, J. Colloid Interface Sci., 326, 374 (2008); https://doi.org/10.1016/j.jcis.2008.06.039.
A. Orstan and J.B.A. Ross, J. Phys. Chem., 91, 2739 (1987); https://doi.org/10.1021/j100295a019.
Riyazuddeen and S. Afrin, J. Chem. Eng. Data, 55, 2643 (2010); https://doi.org/10.1021/je900909s.
Riyazuddeen and T. Altamash, J. Chem. Eng. Data, 54, 3133 (2009); https://doi.org/10.1021/je900199j.
M.J. Iqbal and M.A. Chaudhry, J. Chem. Thermodyn., 41, 221 (2009); https://doi.org/10.1016/j.jct.2008.09.016.
A. Pal and N. Chauhan, J. Mol. Liq., 169, 163 (2012); https://doi.org/10.1016/j.molliq.2012.02.003.
S. Kant and S. Kumar, J. Chem. Eng. Data, 58, 1294 (2013); https://doi.org/10.1021/je301362j.
S. Kant, A. Kumar and S. Kumar, J. Mol. Liq., 150, 39 (2009); https://doi.org/10.1016/j.molliq.2009.09.010.
L.G. Hepler, Can. J. Chem., 47, 4613 (1969); https://doi.org/10.1139/v69-762.
S. Li and W. Purdy, J. Chem. Rev., 92, 1457 (1992); https://doi.org/10.1021/cr00014a009.
R.P. Frankewich, K.N. Thimmaiah and W.L. Hinze, J. Anal. Chem., 63, 2924 (1991); https://doi.org/10.1021/ac00024a023.
J.A. Arancibia and G.M. Escandar, Analyst, 124, 1833 (1999); https://doi.org/10.1039/A906719A.
G.C. Catena and F.V. Bright, J. Anal. Chem., 61, 905 (1989); https://doi.org/10.1021/ac00183a024.
F.V. Bright, T.L. Keimig and L.B. Mcgown, Anal. Chim. Acta, 175, 189 (1985); https://doi.org/10.1016/S0003-2670(00)82731-2.
C. Jianbin, C. Liang, X. Hao and M. Dongpin, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 2809 (2002); https://doi.org/10.1016/S1386-1425(02)00078-1.