Copyright (c) 2019 AJC

This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization of Degree of Deacetylation of Chitosan Snail Shells (Pilla ampulaceae)
Corresponding Author(s) : Nurhaeni
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
Snails fields (Pilla ampulaceae) have a hard shell and are known to be one of the sources of biomaterial called chitin. Chitosan is a natural biopolymer that can be obtained from chitin deacetylation. The objective of this study was to obtain the optimum conditions of chitin deacetylation in highest degree deacetylation of chitosan. This study used random complete method that contains various of NaOH concentration (30, 40, 50, 60 and 70 %), temperature of deacetylation (60, 90, 120, 150 and 180 °C), time of deacetylation (1, 2, 3, 4 and 5 h) and ratio between NaOH and chitin (1:4, 1:6, 1:8, 1:10 and 1:12 b/v) with three repetitions. The deacetylation degrees of chitosan were determined by FTIR. The results show the optimum condition of deacetylation degrees of NaOH concentration, temperature, time and ratio of NaOH and chitin are 60 %, 150 °C, 4 h and 1:10, respectively. This produces the highest deacetylation degree of chitosan rate of 83.23 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.D. Chapman, Numbers of Living Species in Australia and the World, Australian Biological Resources Study, Canberra, Australia, edn 2 (2009).
- R.A.A. Muzzarelli, Depolymerization of Chitins and Chitosans with Hemicellulase, Lysozyme, Papain and Lipase, Chitin Handbook Grottamore: European Chitin Society, pp. 53-65 (1977).
- F. Nessaa and Md. Shah Masumb, Bangladesh J. Sci. Ind. Res., 45, 323 (2010); https://doi.org/10.3329/bjsir.v45i4.7330.
- M.S. Hossain and A. Iqbal, J. Bangladesh Agric. Univ., 12, 153 (2014); https://doi.org/10.3329/jbau.v12i1.21405.
- K. Tokatli and A. Demirdoven, J. Food Process. Preserv., 42, e13494 (2017); https://doi.org/10.1111/jfpp.13494.
- L.J.R. Foster, S. Ho, J. Hook, M. Basuki and H. Marçal, PLoS ONE, 10, e0135153 (2015); https://doi.org/10.1371/journal.pone.0135153.
- Y. Yuan, B.M. Chesnutt, W.O. Haggard and J.D. Bumgardner, Materials, 4, 1399 (2011) https://doi.org/10.3390/ma4081399.
- S. Hajji, I. Younes, O. Ghorbel-Bellaaj, R. Hajji, M. Rinaudo, M. Nasri and K. Jellouli, Int. J. Biol. Macromol., 65, 298 (2014); https://doi.org/10.1016/j.ijbiomac.2014.01.045.
- M.L. Tsaih and R.H. Chen, Appl. Polym., 88, 2917 (2003); https://doi.org/10.1002/app.11986.
- A. Percot, C. Viton and A. Domard, Biomacromolecules, 4, 1380 (2003); https://doi.org/10.1021/bm034115h.
- M. Anwar, A.S. Anggraeni and M.H. Al-Amin, AIP Conf. Proc., 1823, 020071 (2017); https://doi.org/10.1063/1.4978144.
- J.G. Domszy and G.A.F. Roberts, Makromol. Chem., 186, 1671 (1985); https://doi.org/10.1002/macp.1985.021860815.
- Hargono and M. Djaeni, J. Coastal Develop., 7, 31 (2003).
- J. Li, Y. Du and H. Liang, Polym. Degrad. Stab., 92, 515 (2007); https://doi.org/10.1016/j.polymdegradstab.2006.04.028.
- M. Rinaudo, Prog. Polym. Sci., 31, 603 (2006); https://doi.org/10.1016/j.progpolymsci.2006.06.001.
- J. Yang, F. Tian, Z. Wang, Q. Wang, Y.J. Zeng and S.Q. Chen, J. Biomed. Mater. Res. B, Appl. Biomater., 84, 131 (2008); https://doi.org/10.1002/jbm.b.30853.
- C.M. Moura, J.M. Moura, N.M. Soares and L.A.A. Pinto, J. Chem. Eng. Process., 50, 351 (2011); https://doi.org/10.1016/j.cep.2011.03.003.
- O. Alexander and A. Fadli Drastinawati, J. FTEKNIK, 3, 1 (2016).
References
A.D. Chapman, Numbers of Living Species in Australia and the World, Australian Biological Resources Study, Canberra, Australia, edn 2 (2009).
R.A.A. Muzzarelli, Depolymerization of Chitins and Chitosans with Hemicellulase, Lysozyme, Papain and Lipase, Chitin Handbook Grottamore: European Chitin Society, pp. 53-65 (1977).
F. Nessaa and Md. Shah Masumb, Bangladesh J. Sci. Ind. Res., 45, 323 (2010); https://doi.org/10.3329/bjsir.v45i4.7330.
M.S. Hossain and A. Iqbal, J. Bangladesh Agric. Univ., 12, 153 (2014); https://doi.org/10.3329/jbau.v12i1.21405.
K. Tokatli and A. Demirdoven, J. Food Process. Preserv., 42, e13494 (2017); https://doi.org/10.1111/jfpp.13494.
L.J.R. Foster, S. Ho, J. Hook, M. Basuki and H. Marçal, PLoS ONE, 10, e0135153 (2015); https://doi.org/10.1371/journal.pone.0135153.
Y. Yuan, B.M. Chesnutt, W.O. Haggard and J.D. Bumgardner, Materials, 4, 1399 (2011) https://doi.org/10.3390/ma4081399.
S. Hajji, I. Younes, O. Ghorbel-Bellaaj, R. Hajji, M. Rinaudo, M. Nasri and K. Jellouli, Int. J. Biol. Macromol., 65, 298 (2014); https://doi.org/10.1016/j.ijbiomac.2014.01.045.
M.L. Tsaih and R.H. Chen, Appl. Polym., 88, 2917 (2003); https://doi.org/10.1002/app.11986.
A. Percot, C. Viton and A. Domard, Biomacromolecules, 4, 1380 (2003); https://doi.org/10.1021/bm034115h.
M. Anwar, A.S. Anggraeni and M.H. Al-Amin, AIP Conf. Proc., 1823, 020071 (2017); https://doi.org/10.1063/1.4978144.
J.G. Domszy and G.A.F. Roberts, Makromol. Chem., 186, 1671 (1985); https://doi.org/10.1002/macp.1985.021860815.
Hargono and M. Djaeni, J. Coastal Develop., 7, 31 (2003).
J. Li, Y. Du and H. Liang, Polym. Degrad. Stab., 92, 515 (2007); https://doi.org/10.1016/j.polymdegradstab.2006.04.028.
M. Rinaudo, Prog. Polym. Sci., 31, 603 (2006); https://doi.org/10.1016/j.progpolymsci.2006.06.001.
J. Yang, F. Tian, Z. Wang, Q. Wang, Y.J. Zeng and S.Q. Chen, J. Biomed. Mater. Res. B, Appl. Biomater., 84, 131 (2008); https://doi.org/10.1002/jbm.b.30853.
C.M. Moura, J.M. Moura, N.M. Soares and L.A.A. Pinto, J. Chem. Eng. Process., 50, 351 (2011); https://doi.org/10.1016/j.cep.2011.03.003.
O. Alexander and A. Fadli Drastinawati, J. FTEKNIK, 3, 1 (2016).