Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Surfactant-Ruthenium(II) Complexes: Synthesis, Characterization, DNA Binding, Anticancer and Antimicrobial Activity
Corresponding Author(s) : N. Kumaraguru
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
The interaction of ligand bound ruthenium(II) complexes with DNA have grown fame because of their relevance in the development of new reagents for medicinal applications and the impact of dominating cisplatin. Surfactant-ruthenium(II) complexes [Ru(DMP)2(DA)Cl](ClO4) (1) and [Ru(DMP)2(DA)2](ClO4)2 (2) with primary ligand as DMP (2,9-dimethyl[1,10]-phenanthroline) and secondary ligand as dodecyl amine (DA) were synthesized and characterized. The critical micelle concentration (CMC) of complexes in aqueous solution were obtained from conductivity measurements. The interaction of surfactant-ruthenium(II) complexes with CT-DNA has been explored by spectroscopic technique and viscosity dimensions. These complexes were tested for cytotoxic and antimicrobial activities with human cervical cancer cell line (HeLa) and pathogenic microorganisms. The results indicate that the complex 2 binds more strongly to DNA than complex 1 further affecting the viability of the cells significantly and also showed moderate antimicrobial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Garnuszek, J. Lici’anska, S. Skierski, M. Koronkiewicz, M. Mirowski, R. Wiercioch and A.P. Mazurek, Nucl. Med. Biol., 29, 169 (2002); https://doi.org/10.1016/S0969-8051(01)00294-3.
- P.J. Loehrer Sr., S.D. Williams and L.H. Einhorn, J. Natl. Cancer Inst., 80, 1373 (1988); https://doi.org/10.1093/jnci/80.17.1373.
- A. Keder, M.E. Cohen and A.I. Freeman, Cancer Treat. Rep., 62, 819 (1978).
- E. Musgrove, C. Rugg, I. Taylor and D. Hedley, J. Cell. Physiol., 118, 6 (1984); https://doi.org/10.1002/jcp.1041180103.
- A. Bergamo, C. Gaiddon, J.H.M. Schellens, J.H. Beijnen and G. Sava, J. Inorg. Biochem., 106, 90 (2012); https://doi.org/10.1016/j.jinorgbio.2011.09.030.
- J. Liu, W. Zheng, S. Shi, C. Tan, J. Chen, K. Zheng and L. Ji, J. Inorg. Biochem., 102, 193 (2008); https://doi.org/10.1016/j.jinorgbio.2007.07.035.
- A. Bencini and V. Lippolis, Coord. Chem. Rev., 254, 2096 (2010); https://doi.org/10.1016/j.ccr.2010.04.008.
- M.M. Khowdairy, A.M. Badawi, M.A.S. Mohamed and M.Z. Mohamed, J. Cancer Res. Ther., 3, 198 (2007); https://doi.org/10.4103/0973-1482.38994.
- M.D. Prager, F.S. Baechtel, W.C. Gordon, S. Maullin, J. Steinberg and A. Sanderson, eds.: B.H. Tom and H.R. Six, Liposomes and Immunobiology, Elsevier: New York 39 (1980).
- C.L. Huyck, Am. J. Pharm., 116, 50 (1944).
- S. Bhattacharya and S.S. Mandal, Biochim. Biophys. Acta, 1323, 29 (1997); https://doi.org/10.1016/S0005-2736(96)00171-X.
- D. McLoughlin and D. Langevin, Colloids Surf. A Physicochem. Eng. Asp., 250, 79 (2004); https://doi.org/10.1016/j.colsurfa.2004.04.096.
- X. Zhao, Y. Shang, H. Liu and Y. Hu, J. Colloid Interface Sci., 314, 478 (2007); https://doi.org/10.1016/j.jcis.2007.04.059.
- N. Jiang, P. Li, Y. Wang, J. Wang, H. Yan and R.K. Thomas, J. Phys. Chem. B, 108, 153 (2004).
- N. Aydogan and N.L. Abbott, Langmuir, 17, 5703 (2001); https://doi.org/10.1021/la010178e.
- H. Choi and M.P. Suh, Inorg. Chem., 42, 1151 (2003); https://doi.org/10.1021/ic025971p.
- J. Bowers, K.E. Amos, D.W. Bruce and J.R.P. Webster, Langmuir, 21, 1346 (2005); https://doi.org/10.1021/la0478705.
- X. Jia-Qing, X. Bin, X. Bin, H. Wei and Z. Xian-Cheng, J. Dispers. Sci. Technol., 27, 481 (2006); https://doi.org/10.1080/01932690500374227.
- J. Marmur, J. Mol. Biol., 3, 208 (1961); https://doi.org/10.1016/S0022-2836(61)80047-8.
- T.R. Weaver, Unpublished Results, The University of North Carolina, Chapel Hill, N.C., (1974).
- N. Kumaraguru and K. Santhakumar, J. Coord. Chem., 62, 3500 (2009); https://doi.org/10.1080/00958970903118053.
- J. Barthel, F. Feuerlein, R. Neueder and R. Wachter, J. Solution Chem., 9, 209 (1980); https://doi.org/10.1007/BF00648327.
- M.F. Reichmann, S.A. Rice, C.A. Thomas and P. Doty, J. Am. Chem. Soc., 76, 3047 (1954); https://doi.org/10.1021/ja01640a067.
- S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 31, 9319 (1992); https://doi.org/10.1021/bi00154a001.
- T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4.
- A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd, J. Natl. Cancer Inst., 83, 757 (1991); https://doi.org/10.1093/jnci/83.11.757.
- D.L. Spector, R.D. Goldman and L.A. Leinwand, Cell: A Laboratory Manual, Cold Spring Harbor, New York, 34.1–34.9. (1998).
- R. Kumar, S. Arunachalam, V. Periasamy, C. Preethy, A. Riyasdeen and M. Akbarsha, J. Inorg. Biochem., 103, 117 (2009); https://doi.org/10.1016/j.jinorgbio.2008.09.010.
- R.G. Azrak, C.L. Frank, X. Ling, H.K. Slocum, F. Li, B.A. Foster and Y.M. Rustum, Mol. Cancer Ther., 5, 2540 (2006); https://doi.org/10.1158/1535-7163.MCT-05-0546.
- S. Veeralakshmi, G. Sabapathi, S. Arunachalam, P. Venuvanalingam, S. Nehru, P. Kumar, C. Anusha and V. Ravikumar, RSC Adv., 5, 31746 (2015); https://doi.org/10.1039/C5RA02763B.
- A.W. Bauer, N.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493.
- M.S. Hossain, S. Easmin, M.S. Islam and M. Rashid, J. Pharm. Pharmacol., 56, 1519 (2004); https://doi.org/10.1211/0022357044913.
- R.S. Kumar, S. Arunachalam, V.S. Periasamy, C.P. Preethy, A. Riyasdeen and M.A. Akbarsha, Aust. J. Chem., 62, 165 (2009); https://doi.org/10.1071/CH08281.
- J.S. Strukl and J.L. Walter, Spectrochim. Acta A Mol. Biomol. Spectrosc., 27, 223 (1971); https://doi.org/10.1016/0584-8539(71)80028-4.
- A.A. Schilt and R.C. Taylor, J. Inorg. Nucl. Chem., 9, 211 (1959); https://doi.org/10.1016/0022-1902(59)80224-4.
- L. Jin and P. Yang, Polyhedron, 16, 3395 (1997); https://doi.org/10.1016/S0277-5387(97)00042-9.
- T.I.A. Gerber, A. Abrahams, P. Mayer and E. Hosten, J. Coord. Chem., 56, 1397 (2003); https://doi.org/10.1080/00958970510001641691.
- M.R. Rosenthal, J. Chem. Educ., 50, 331 (1973); https://doi.org/10.1021/ed050p331.
- S. Ghosh, A.C. Barve, A.A. Kumbhar, A.S. Kumbhar, V.G. Puranik, P.A. Datar, U.B. Sonawane and R.R. Joshi, J. Inorg. Biochem., 100, 331 (2006); https://doi.org/10.1016/j.jinorgbio.2005.11.022.
- J.D. Miller and R.H. Prince, J. Chem. Soc. A, 519 (1969); https://doi.org/10.1039/j19690000519.
- S. Castellano, H. Gunther and S. Ebersole, J. Phys. Chem., 69, 4166 (1965); https://doi.org/10.1021/j100782a018.
- J.M. Kelly, A.B. Tossi, D.J. McConnell and C. OhUigin, Nucleic Acids Res., 13, 6017 (1985); https://doi.org/10.1093/nar/13.17.6017.
- J.K. Barton, A.T. Danishefsky and J.M. Goldberg, J. Am. Chem. Soc., 106, 2172 (1984); https://doi.org/10.1021/ja00319a043.
- S.A. Tysoe, R.J. Morgan, A.D. Baker and T.C. Strekas, J. Phys. Chem., 97, 1707 (1993); https://doi.org/10.1021/j100110a038.
- R.F. Pasternack, E.J. Gibbs and J.J. Villafranca, Biochemistry, 22, 2406 (1983); https://doi.org/10.1021/bi00279a016.
- K. Liu, L. Zheng, C. Ma, H.R. Gostl and A. Herrmann, Chem. Soc. Rev., 46, 5147 (2017); https://doi.org/10.1039/C7CS00165G.
- J. Liu, T. Zhang, T. Lu, L. Qu, H. Zhou, Q. Zhang and L. Ji, J. Inorg. Biochem., 91, 269 (2002); https://doi.org/10.1016/S0162-0134(02)00441-5.
- C. Liu, J.Y. Zhou, Q.X. Li, L.J. Wang, Z.R. Liao and H.B. Xu, J. Inorg. Biochem., 75, 233 (1999); https://doi.org/10.1016/S0162-0134(99)00037-9.
- S. Zhang, Y. Zhu, C. Tu, H. Wei, Z. Yang, L. Lin, J. Ding, J. Zhang and Z. Guo, J. Inorg. Biochem., 98, 2099 (2004); https://doi.org/10.1016/j.jinorgbio.2004.09.014.
- M.T. Carter, M. Rodriguez and A.J. Bard, J. Am. Chem. Soc., 111, 8901 (1989); https://doi.org/10.1021/ja00206a020.
- A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro and J.K. Barton, J. Am. Chem. Soc., 111, 3051 (1989); https://doi.org/10.1021/ja00190a046.
- A. Wolfe, G.H. Shimer Jr. and T. Meehan, Biochemistry, 26, 6392 (1987); https://doi.org/10.1021/bi00394a013.
- V.A. Izumrudov, M.V. Zhiryakova and A.A. Goulko, Langmuir, 18, 10348 (2002); https://doi.org/10.1021/la020592u.
- V.A. Izumrudov, M.V. Zhiryakova and S.E. Kudaibergenov, Biopolymers, 52, 94 (1999); https://doi.org/10.1002/1097-0282(1999)52:2<94::AID-BIP3>3.0.CO;2-O.
- B.C. Baguley and M. LeBret, Biochemistry, 23, 937 (1984);https://doi.org/10.1021/bi00300a022.
- T.B. Wyman, F. Nicol, O. Zelphati, P.V. Scaria, C. Plank and F.C. Szoka, Biochemistry, 36, 3008 (1997); https://doi.org/10.1021/bi9618474.
- J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973); https://doi.org/10.1021/bi00745a020.
- F.A. Beckford, J. Thessing, M. Shaloski Jr., P.C. Mbarushimana, A. Brock, J. Didion, J. Woods, A. Gonzalez-Sarrías and N.P. Seeram, J. Mol. Struct., 992, 39 (2011); https://doi.org/10.1016/j.molstruc.2011.02.029.
- J. Peberdy, J. Malina, S. Khalid, M.J. Hannon and A. Rodger, J. Inorg. Biochem., 101, 1937 (2007); https://doi.org/10.1016/j.jinorgbio.2007.07.005.
- K.S. Ghosh, B.K. Sahoo, D. Jana and S. Dasgupta, J. Inorg. Biochem., 102, 1711 (2008); https://doi.org/10.1016/j.jinorgbio.2008.04.008.
- J.R. Lacowicz, Principles of Fluorescence Spectroscopy, Springer: New York, edn 3 (2006).
- S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 32, 2573 (1993); https://doi.org/10.1021/bi00061a015.
- B. Peng, H. Chao, B. Sun, H. Li, F. Gao and L.N. Ji, J. Inorg. Biochem., 101, 404 (2007); https://doi.org/10.1016/j.jinorgbio.2006.11.008.
- R. Dias, S. Mel’nikov, B. Lindman and M.G. Miguel, Langmuir, 16, 9577 (2000); https://doi.org/10.1021/la000640f.
- P. Kumar, S. Senthamilselvi, M. Govindaraju and R. Sankar, RSC Adv., 4, 46157 (2014); https://doi.org/10.1039/C4RA06664B.
- D.C. Ware, B.D. Palmer, W.R. Wilson and W.A. Denny, J. Med. Chem., 36, 1839 (1993); https://doi.org/10.1021/jm00065a006.
- B. Coyle, P. Kinsella, M. McCann, M. Devereux, R. O’Connor, M. Clynes and K. Kavanagh, Toxicol. In Vitro, 18, 63 (2004); https://doi.org/10.1016/j.tiv.2003.08.011.
- M. McCann, M. Geraghty, M. Devereux, D. O’Shea, J. Mason and L. O’Sullivan, Met. Based Drugs, 7, 185 (2000); https://doi.org/10.1155/MBD.2000.185.
- B. Coyle, K. Kavanagh, M. McCann, M. Devereux and M. Geraghty, Biometals, 16, 321 (2003); https://doi.org/10.1023/A:1020695923788.
- J.A. Collins, C.A. Schandl, K.K. Young, J. Vesely and M.C. Willingham, J. Histochem. Cytochem., 45, 923 (1997); https://doi.org/10.1177/002215549704500702.
- V.I. Martin, R.R. de la Haba, A. Ventosa, E. Congiu, J.J. Ortega-Calvo and M.L. Moya, Colloids Surf. B Biointerfaces, 114, 247 (2014); https://doi.org/10.1016/j.colsurfb.2013.10.017.
- M.A. Zoroddu, S. Zanetti, R. Pogni and R. Basosi, J. Inorg. Biochem., 63, 291 (1996); https://doi.org/10.1016/0162-0134(96)00015-3.
References
I. Garnuszek, J. Lici’anska, S. Skierski, M. Koronkiewicz, M. Mirowski, R. Wiercioch and A.P. Mazurek, Nucl. Med. Biol., 29, 169 (2002); https://doi.org/10.1016/S0969-8051(01)00294-3.
P.J. Loehrer Sr., S.D. Williams and L.H. Einhorn, J. Natl. Cancer Inst., 80, 1373 (1988); https://doi.org/10.1093/jnci/80.17.1373.
A. Keder, M.E. Cohen and A.I. Freeman, Cancer Treat. Rep., 62, 819 (1978).
E. Musgrove, C. Rugg, I. Taylor and D. Hedley, J. Cell. Physiol., 118, 6 (1984); https://doi.org/10.1002/jcp.1041180103.
A. Bergamo, C. Gaiddon, J.H.M. Schellens, J.H. Beijnen and G. Sava, J. Inorg. Biochem., 106, 90 (2012); https://doi.org/10.1016/j.jinorgbio.2011.09.030.
J. Liu, W. Zheng, S. Shi, C. Tan, J. Chen, K. Zheng and L. Ji, J. Inorg. Biochem., 102, 193 (2008); https://doi.org/10.1016/j.jinorgbio.2007.07.035.
A. Bencini and V. Lippolis, Coord. Chem. Rev., 254, 2096 (2010); https://doi.org/10.1016/j.ccr.2010.04.008.
M.M. Khowdairy, A.M. Badawi, M.A.S. Mohamed and M.Z. Mohamed, J. Cancer Res. Ther., 3, 198 (2007); https://doi.org/10.4103/0973-1482.38994.
M.D. Prager, F.S. Baechtel, W.C. Gordon, S. Maullin, J. Steinberg and A. Sanderson, eds.: B.H. Tom and H.R. Six, Liposomes and Immunobiology, Elsevier: New York 39 (1980).
C.L. Huyck, Am. J. Pharm., 116, 50 (1944).
S. Bhattacharya and S.S. Mandal, Biochim. Biophys. Acta, 1323, 29 (1997); https://doi.org/10.1016/S0005-2736(96)00171-X.
D. McLoughlin and D. Langevin, Colloids Surf. A Physicochem. Eng. Asp., 250, 79 (2004); https://doi.org/10.1016/j.colsurfa.2004.04.096.
X. Zhao, Y. Shang, H. Liu and Y. Hu, J. Colloid Interface Sci., 314, 478 (2007); https://doi.org/10.1016/j.jcis.2007.04.059.
N. Jiang, P. Li, Y. Wang, J. Wang, H. Yan and R.K. Thomas, J. Phys. Chem. B, 108, 153 (2004).
N. Aydogan and N.L. Abbott, Langmuir, 17, 5703 (2001); https://doi.org/10.1021/la010178e.
H. Choi and M.P. Suh, Inorg. Chem., 42, 1151 (2003); https://doi.org/10.1021/ic025971p.
J. Bowers, K.E. Amos, D.W. Bruce and J.R.P. Webster, Langmuir, 21, 1346 (2005); https://doi.org/10.1021/la0478705.
X. Jia-Qing, X. Bin, X. Bin, H. Wei and Z. Xian-Cheng, J. Dispers. Sci. Technol., 27, 481 (2006); https://doi.org/10.1080/01932690500374227.
J. Marmur, J. Mol. Biol., 3, 208 (1961); https://doi.org/10.1016/S0022-2836(61)80047-8.
T.R. Weaver, Unpublished Results, The University of North Carolina, Chapel Hill, N.C., (1974).
N. Kumaraguru and K. Santhakumar, J. Coord. Chem., 62, 3500 (2009); https://doi.org/10.1080/00958970903118053.
J. Barthel, F. Feuerlein, R. Neueder and R. Wachter, J. Solution Chem., 9, 209 (1980); https://doi.org/10.1007/BF00648327.
M.F. Reichmann, S.A. Rice, C.A. Thomas and P. Doty, J. Am. Chem. Soc., 76, 3047 (1954); https://doi.org/10.1021/ja01640a067.
S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 31, 9319 (1992); https://doi.org/10.1021/bi00154a001.
T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4.
A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd, J. Natl. Cancer Inst., 83, 757 (1991); https://doi.org/10.1093/jnci/83.11.757.
D.L. Spector, R.D. Goldman and L.A. Leinwand, Cell: A Laboratory Manual, Cold Spring Harbor, New York, 34.1–34.9. (1998).
R. Kumar, S. Arunachalam, V. Periasamy, C. Preethy, A. Riyasdeen and M. Akbarsha, J. Inorg. Biochem., 103, 117 (2009); https://doi.org/10.1016/j.jinorgbio.2008.09.010.
R.G. Azrak, C.L. Frank, X. Ling, H.K. Slocum, F. Li, B.A. Foster and Y.M. Rustum, Mol. Cancer Ther., 5, 2540 (2006); https://doi.org/10.1158/1535-7163.MCT-05-0546.
S. Veeralakshmi, G. Sabapathi, S. Arunachalam, P. Venuvanalingam, S. Nehru, P. Kumar, C. Anusha and V. Ravikumar, RSC Adv., 5, 31746 (2015); https://doi.org/10.1039/C5RA02763B.
A.W. Bauer, N.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493.
M.S. Hossain, S. Easmin, M.S. Islam and M. Rashid, J. Pharm. Pharmacol., 56, 1519 (2004); https://doi.org/10.1211/0022357044913.
R.S. Kumar, S. Arunachalam, V.S. Periasamy, C.P. Preethy, A. Riyasdeen and M.A. Akbarsha, Aust. J. Chem., 62, 165 (2009); https://doi.org/10.1071/CH08281.
J.S. Strukl and J.L. Walter, Spectrochim. Acta A Mol. Biomol. Spectrosc., 27, 223 (1971); https://doi.org/10.1016/0584-8539(71)80028-4.
A.A. Schilt and R.C. Taylor, J. Inorg. Nucl. Chem., 9, 211 (1959); https://doi.org/10.1016/0022-1902(59)80224-4.
L. Jin and P. Yang, Polyhedron, 16, 3395 (1997); https://doi.org/10.1016/S0277-5387(97)00042-9.
T.I.A. Gerber, A. Abrahams, P. Mayer and E. Hosten, J. Coord. Chem., 56, 1397 (2003); https://doi.org/10.1080/00958970510001641691.
M.R. Rosenthal, J. Chem. Educ., 50, 331 (1973); https://doi.org/10.1021/ed050p331.
S. Ghosh, A.C. Barve, A.A. Kumbhar, A.S. Kumbhar, V.G. Puranik, P.A. Datar, U.B. Sonawane and R.R. Joshi, J. Inorg. Biochem., 100, 331 (2006); https://doi.org/10.1016/j.jinorgbio.2005.11.022.
J.D. Miller and R.H. Prince, J. Chem. Soc. A, 519 (1969); https://doi.org/10.1039/j19690000519.
S. Castellano, H. Gunther and S. Ebersole, J. Phys. Chem., 69, 4166 (1965); https://doi.org/10.1021/j100782a018.
J.M. Kelly, A.B. Tossi, D.J. McConnell and C. OhUigin, Nucleic Acids Res., 13, 6017 (1985); https://doi.org/10.1093/nar/13.17.6017.
J.K. Barton, A.T. Danishefsky and J.M. Goldberg, J. Am. Chem. Soc., 106, 2172 (1984); https://doi.org/10.1021/ja00319a043.
S.A. Tysoe, R.J. Morgan, A.D. Baker and T.C. Strekas, J. Phys. Chem., 97, 1707 (1993); https://doi.org/10.1021/j100110a038.
R.F. Pasternack, E.J. Gibbs and J.J. Villafranca, Biochemistry, 22, 2406 (1983); https://doi.org/10.1021/bi00279a016.
K. Liu, L. Zheng, C. Ma, H.R. Gostl and A. Herrmann, Chem. Soc. Rev., 46, 5147 (2017); https://doi.org/10.1039/C7CS00165G.
J. Liu, T. Zhang, T. Lu, L. Qu, H. Zhou, Q. Zhang and L. Ji, J. Inorg. Biochem., 91, 269 (2002); https://doi.org/10.1016/S0162-0134(02)00441-5.
C. Liu, J.Y. Zhou, Q.X. Li, L.J. Wang, Z.R. Liao and H.B. Xu, J. Inorg. Biochem., 75, 233 (1999); https://doi.org/10.1016/S0162-0134(99)00037-9.
S. Zhang, Y. Zhu, C. Tu, H. Wei, Z. Yang, L. Lin, J. Ding, J. Zhang and Z. Guo, J. Inorg. Biochem., 98, 2099 (2004); https://doi.org/10.1016/j.jinorgbio.2004.09.014.
M.T. Carter, M. Rodriguez and A.J. Bard, J. Am. Chem. Soc., 111, 8901 (1989); https://doi.org/10.1021/ja00206a020.
A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro and J.K. Barton, J. Am. Chem. Soc., 111, 3051 (1989); https://doi.org/10.1021/ja00190a046.
A. Wolfe, G.H. Shimer Jr. and T. Meehan, Biochemistry, 26, 6392 (1987); https://doi.org/10.1021/bi00394a013.
V.A. Izumrudov, M.V. Zhiryakova and A.A. Goulko, Langmuir, 18, 10348 (2002); https://doi.org/10.1021/la020592u.
V.A. Izumrudov, M.V. Zhiryakova and S.E. Kudaibergenov, Biopolymers, 52, 94 (1999); https://doi.org/10.1002/1097-0282(1999)52:2<94::AID-BIP3>3.0.CO;2-O.
B.C. Baguley and M. LeBret, Biochemistry, 23, 937 (1984);https://doi.org/10.1021/bi00300a022.
T.B. Wyman, F. Nicol, O. Zelphati, P.V. Scaria, C. Plank and F.C. Szoka, Biochemistry, 36, 3008 (1997); https://doi.org/10.1021/bi9618474.
J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973); https://doi.org/10.1021/bi00745a020.
F.A. Beckford, J. Thessing, M. Shaloski Jr., P.C. Mbarushimana, A. Brock, J. Didion, J. Woods, A. Gonzalez-Sarrías and N.P. Seeram, J. Mol. Struct., 992, 39 (2011); https://doi.org/10.1016/j.molstruc.2011.02.029.
J. Peberdy, J. Malina, S. Khalid, M.J. Hannon and A. Rodger, J. Inorg. Biochem., 101, 1937 (2007); https://doi.org/10.1016/j.jinorgbio.2007.07.005.
K.S. Ghosh, B.K. Sahoo, D. Jana and S. Dasgupta, J. Inorg. Biochem., 102, 1711 (2008); https://doi.org/10.1016/j.jinorgbio.2008.04.008.
J.R. Lacowicz, Principles of Fluorescence Spectroscopy, Springer: New York, edn 3 (2006).
S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 32, 2573 (1993); https://doi.org/10.1021/bi00061a015.
B. Peng, H. Chao, B. Sun, H. Li, F. Gao and L.N. Ji, J. Inorg. Biochem., 101, 404 (2007); https://doi.org/10.1016/j.jinorgbio.2006.11.008.
R. Dias, S. Mel’nikov, B. Lindman and M.G. Miguel, Langmuir, 16, 9577 (2000); https://doi.org/10.1021/la000640f.
P. Kumar, S. Senthamilselvi, M. Govindaraju and R. Sankar, RSC Adv., 4, 46157 (2014); https://doi.org/10.1039/C4RA06664B.
D.C. Ware, B.D. Palmer, W.R. Wilson and W.A. Denny, J. Med. Chem., 36, 1839 (1993); https://doi.org/10.1021/jm00065a006.
B. Coyle, P. Kinsella, M. McCann, M. Devereux, R. O’Connor, M. Clynes and K. Kavanagh, Toxicol. In Vitro, 18, 63 (2004); https://doi.org/10.1016/j.tiv.2003.08.011.
M. McCann, M. Geraghty, M. Devereux, D. O’Shea, J. Mason and L. O’Sullivan, Met. Based Drugs, 7, 185 (2000); https://doi.org/10.1155/MBD.2000.185.
B. Coyle, K. Kavanagh, M. McCann, M. Devereux and M. Geraghty, Biometals, 16, 321 (2003); https://doi.org/10.1023/A:1020695923788.
J.A. Collins, C.A. Schandl, K.K. Young, J. Vesely and M.C. Willingham, J. Histochem. Cytochem., 45, 923 (1997); https://doi.org/10.1177/002215549704500702.
V.I. Martin, R.R. de la Haba, A. Ventosa, E. Congiu, J.J. Ortega-Calvo and M.L. Moya, Colloids Surf. B Biointerfaces, 114, 247 (2014); https://doi.org/10.1016/j.colsurfb.2013.10.017.
M.A. Zoroddu, S. Zanetti, R. Pogni and R. Basosi, J. Inorg. Biochem., 63, 291 (1996); https://doi.org/10.1016/0162-0134(96)00015-3.