Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
UHPLC Analysis of Polyphenol Composition and Antioxidant Activity from Different Solvent Extracts of Coriandrum sativum Seeds Cultivated in Korea
Corresponding Author(s) : Ill-Min Chung
Asian Journal of Chemistry,
Vol. 26 No. 19 (2014): Vol 26 Issue 19
Abstract
The aim of this work was to establish the polyphenolic profile and antioxidant capacity of Coriandrum sativum seeds that could potentially be used in the human diet. An ultra high performance liquid chromatographic method was used to identify and quantify individual phenolic compounds of the C. sativum seeds. A total of 24 polyphenolic compounds were identified and quantified in C. sativum seeds, including hydroxybenzoic acids, hydroxycinnamic acids, flavonols and other groups of phenolic compounds. Ultra high performance liquid chromatographic analysis of the seed extract revealed that salicylic acid was the dominant phenolic compound in coriander seed extract, it constituted about 650.80 μg/g, followed by gentisic acid (223.45 μg/g), chlorogenic acid (162.10 μg/g), pyrogallol (138.80 μg/g) and syringic acid (90.95 μg/g). The C. sativum seeds was extracted with 4 different solvents (ethyl acetate, methanol, butanol and water) and screened for total phenolic content, total flavonoid content and antioxidant activity. The antioxidant activity of C. sativum seeds was assessed by evaluating the 1,1-diphenyl-2-picrylhydrazyl (DPPH), reducing power, metal chelating and phosphomolybdenum assay. Ethyl acetate extract exhibited the highest phenolic (23.09 mg/g gallic acid equivalent) and flavonoid contents (1.08 mg/g quercetin equivalent). The ethyl acetate extract possesses highest antioxidant activity towards DPPH, reducing power, metal chelating and phosphomolybdenum assay. The antioxidant activity among the C. sativum seed extracts assayed through all the four methods was found to be ethyl acetate > butanol > methanol > water extract. In conclusion, addition of coriander seeds to food increases the antioxidant content and may have potential as a natural antioxidant and thus inhibit undesired oxidation processes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.H. Eikani, F. Golmohammad and S. Rowshanzamir, J. Food Eng., 80, 735 (2007); doi:10.1016/j.jfoodeng.2006.05.015.
- M. Emamghoreishi, M. Khasaki and M.F. Aazam, J. Ethnopharmacol., 96, 365 (2005); doi:10.1016/j.jep.2004.06.022.
- K. Msaada, K. Hosni, M.B. Taarit, T. Chahed, M.E. Kchouk and B. Marzouk, Food Chem., 102, 1131 (2007); doi:10.1016/j.foodchem.2006.06.046.
- C. Kaur and H.C. Kapoor, Int. J. Food Sci. Technol., 36, 703 (2001); doi:10.1046/j.1365-2621.2001.00513.x.
- J.G. Elliot, Food Technol., 53, 46 (1999).
- Y. Choi and J. Lee, Food Chem., 114, 1386 (2009); doi:10.1016/j.foodchem.2008.11.018.
- I.S. Carvalho, T. Cavaco and M. Brodelius, Ind. Crops Prod., 33, 382 (2011); doi:10.1016/j.indcrop.2010.11.005.
- R.J. Nijveldt, E. van Nood, D.E.C. van Hoorn, P.G. Boelens, K. van Norren and P.A.M. van Leeuwen, Am. J. Clin. Nutr., 74, 418 (2001).
- V. Katalinic, S.S. Mozina, D. Skroza, I. Generalic, H. Abramovic, M. Milos, I. Ljubenkov, S. Piskernik, I. Pezo and P. Terpinc, Food Chem., 119, 715 (2010); doi:10.1016/j.foodchem.2009.07.019.
- H. Wangensteen, A.B. Samuelsen and K.E. Malterud, Food Chem., 88, 293 (2004); doi:10.1016/j.foodchem.2004.01.047.
- N.B. Guerra, E. de Almeida Melo and J.M. Filho, J. Food Compos. Anal., 18, 193 (2005); doi:10.1016/j.jfca.2003.12.006.
- G. Singh, S. Maurya, M.P. de Lampasona and C.A.N. Catalan, Flavour Fragrance J., 21, 472 (2006); doi:10.1002/ffj.1608.
- V.L. Singleton and J.A. Rossi, Am. J. Enol. Vitic., 37, 144 (1965).
- W.C. Willett, Science, 296, 695 (2002); doi:10.1126/science.1071055.
- D.R. Katerere and J.N. Eloff, Phytother. Res., 19, 779 (2005); doi:10.1002/ptr.1719.
- M. Oyaizu, Jpn. J. Nutr., 44, 307 (1986); doi:10.5264/eiyogakuzashi.44.307.
- T.C.P. Dinis, V.M.C. Madeira and L.M. Almeida, Arch. Biochem. Biophys., 315, 161 (1994); doi:10.1006/abbi.1994.1485.
- P. Prieto, M. Pineda and M. Aguilar, Anal. Biochem., 269, 337 (1999); doi:10.1006/abio.1999.4019.
- R.L. Prior and G. Cao, Hortic. Sci., 35, 588 (2000).
- J.A. Ross and C.M. Kasum, Annu. Rev. Nutr., 22, 19 (2002); doi:10.1146/annurev.nutr.22.111401.144957.
- H. Wang, M.G. Nair, G.M. Strasburg, A.M. Booren and J.I. Gray, J. Agric. Food Chem., 47, 840 (1999); doi:10.1021/jf980936f.
- M.S. Blois, Nature, 181, 1199 (1958); doi:10.1038/1811199a0.
- S.J. Huang and J.L. Mau, LWT- Food Sci. Technol., 39, 707 (2006); doi:10.1016/j.lwt.2005.06.001.
- R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radic. Biol. Med., 26, 1231 (1999); doi:10.1016/S0891-5849(98)00315-3.
- P.-D. Duh, J. Am. Oil Chem. Soc., 75, 455 (1998); doi:10.1007/s11746-998-0248-8.
- F. Yamaguchi, M. Saito, T. Ariga, Y. Yoshimura and H. Nakazawa, J. Agric. Food Chem., 48, 2320 (2000); doi:10.1021/jf990908c.
- E. Keowmaneechai and D.J. McClements, Food Res. Int., 39, 230 (2006); doi:10.1016/j.foodres.2005.07.010.
References
M.H. Eikani, F. Golmohammad and S. Rowshanzamir, J. Food Eng., 80, 735 (2007); doi:10.1016/j.jfoodeng.2006.05.015.
M. Emamghoreishi, M. Khasaki and M.F. Aazam, J. Ethnopharmacol., 96, 365 (2005); doi:10.1016/j.jep.2004.06.022.
K. Msaada, K. Hosni, M.B. Taarit, T. Chahed, M.E. Kchouk and B. Marzouk, Food Chem., 102, 1131 (2007); doi:10.1016/j.foodchem.2006.06.046.
C. Kaur and H.C. Kapoor, Int. J. Food Sci. Technol., 36, 703 (2001); doi:10.1046/j.1365-2621.2001.00513.x.
J.G. Elliot, Food Technol., 53, 46 (1999).
Y. Choi and J. Lee, Food Chem., 114, 1386 (2009); doi:10.1016/j.foodchem.2008.11.018.
I.S. Carvalho, T. Cavaco and M. Brodelius, Ind. Crops Prod., 33, 382 (2011); doi:10.1016/j.indcrop.2010.11.005.
R.J. Nijveldt, E. van Nood, D.E.C. van Hoorn, P.G. Boelens, K. van Norren and P.A.M. van Leeuwen, Am. J. Clin. Nutr., 74, 418 (2001).
V. Katalinic, S.S. Mozina, D. Skroza, I. Generalic, H. Abramovic, M. Milos, I. Ljubenkov, S. Piskernik, I. Pezo and P. Terpinc, Food Chem., 119, 715 (2010); doi:10.1016/j.foodchem.2009.07.019.
H. Wangensteen, A.B. Samuelsen and K.E. Malterud, Food Chem., 88, 293 (2004); doi:10.1016/j.foodchem.2004.01.047.
N.B. Guerra, E. de Almeida Melo and J.M. Filho, J. Food Compos. Anal., 18, 193 (2005); doi:10.1016/j.jfca.2003.12.006.
G. Singh, S. Maurya, M.P. de Lampasona and C.A.N. Catalan, Flavour Fragrance J., 21, 472 (2006); doi:10.1002/ffj.1608.
V.L. Singleton and J.A. Rossi, Am. J. Enol. Vitic., 37, 144 (1965).
W.C. Willett, Science, 296, 695 (2002); doi:10.1126/science.1071055.
D.R. Katerere and J.N. Eloff, Phytother. Res., 19, 779 (2005); doi:10.1002/ptr.1719.
M. Oyaizu, Jpn. J. Nutr., 44, 307 (1986); doi:10.5264/eiyogakuzashi.44.307.
T.C.P. Dinis, V.M.C. Madeira and L.M. Almeida, Arch. Biochem. Biophys., 315, 161 (1994); doi:10.1006/abbi.1994.1485.
P. Prieto, M. Pineda and M. Aguilar, Anal. Biochem., 269, 337 (1999); doi:10.1006/abio.1999.4019.
R.L. Prior and G. Cao, Hortic. Sci., 35, 588 (2000).
J.A. Ross and C.M. Kasum, Annu. Rev. Nutr., 22, 19 (2002); doi:10.1146/annurev.nutr.22.111401.144957.
H. Wang, M.G. Nair, G.M. Strasburg, A.M. Booren and J.I. Gray, J. Agric. Food Chem., 47, 840 (1999); doi:10.1021/jf980936f.
M.S. Blois, Nature, 181, 1199 (1958); doi:10.1038/1811199a0.
S.J. Huang and J.L. Mau, LWT- Food Sci. Technol., 39, 707 (2006); doi:10.1016/j.lwt.2005.06.001.
R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radic. Biol. Med., 26, 1231 (1999); doi:10.1016/S0891-5849(98)00315-3.
P.-D. Duh, J. Am. Oil Chem. Soc., 75, 455 (1998); doi:10.1007/s11746-998-0248-8.
F. Yamaguchi, M. Saito, T. Ariga, Y. Yoshimura and H. Nakazawa, J. Agric. Food Chem., 48, 2320 (2000); doi:10.1021/jf990908c.
E. Keowmaneechai and D.J. McClements, Food Res. Int., 39, 230 (2006); doi:10.1016/j.foodres.2005.07.010.